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Nice to meet you

First things first: a show of hands

• who has used before?

• who knows what does Maximum Likelihood Estimator means ?

• who is afraid/uncomfortable with math formulas ?

• who knows what a regression/linear model is ?

• who has ever heard of random-effects before ?

⇒ What do you do, and what are your expectations from this course ?
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Bayesian vocabulary

• paradigm

• a priori

• a posteriori

• elicitation
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Course objectives

1 Familiarize oneself with the Bayesian framework:

1 understand and assess a Bayesian modeling strategy, and discuss its
underlying assumptions

2 rigorously describe expert knowledge by a quantitative prior
distribution

2 Study and perform Bayesian analyses in biomedical applications:

1 understand, discuss and reproduce a Bayesian (re-)estimation of a
Relative Risk

2 understand and perform a Bayesian meta-analysis using

3 understand and explain an adaptive design for Phase I/II trials and
the associated decision-rule

NB : this course is by no means exhaustive, and the curious reader will be referred to
more complete works such as The Bayesian Choice by C Robert.
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Introduction
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Frequentist statistics

Statistics:

• a mathematical science
• to describe what has happened and
• to assess what may happen in the future
• relies on the observation of natural phenomena in order to propose
an interpretation, often through probabilistic models

Frequentist statistics:
• Neyman & Pearson
• deterministic view of the parameters
• Maximum Likelihood Estimation
• statistical test theory & confidence interval
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Bayesian paradigm

Bayes’ theorem
Reverend Thomas Bayes posthumous article in 1763

Pr(A|E) = Pr(E|A)Pr(A)

Pr(E|A)Pr(A)+Pr
(
E|A)

Pr
(
A
) = Pr(E|A)Pr(A)

Pr(E)

(conditional probability formula: Pr(A|E) = Pr(A∩E)
Pr(E) )

In practice:
Last time you visited the doctor, you got tested for a rare disease. Unluckily,
the result was positive. . .

Given the test result, what is the probability that I actually have this disease?

(Medical tests are, after all, not perfectly accurate.)

→ Seeing Theory, Brown University
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Bayesian paradigm

Bayes theorem: exercise

1% of the population is affected by this rare disease. A medical test has the
following properties:

• if someone has the disease, its test will come out positive 99% of the time

• if someone does not have the disease, its test will come out negative 95%
of the time

Given that someone got a positive result, what is his/her probability to have
the disease ?

Pr(M =+) = 0.01 Pr(T =+|M =+) = 0.99 Pr(T =−|M =−) = 0.95

Pr(M =+|T =+) =
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Bayesian paradigm

Continuous Bayes’ theorem

• parametric (probabilistic) model f (y|θ)

• parameters θ

• probability distribution π

Continuous Bayes’ theorem:

p(θ|y) = f (y|θ)π(θ)∫
f (y|θ)π(θ)dθ

remember Pierre-Simon de Laplace !
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Bayesian paradigm

Bayes philosophy

Parameters are random variables ! – no “true” value
⇒ induces a marginal probability distribution π(θ) on the parameters:

the prior distribution

allows to formally take into account hypotheses in the modeling

necessarily introduces subjectivity into the analysis
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Bayesian paradigm

Bayesian vs. Frequentists: a historical note

1 Bayes + Laplace ⇒ development of statistics in the 18-19th

centuries

2 Galton & Pearson, then Fisher & Neymann ⇒ frequentist theory
became dominant during the 20th century

3 turn of the 21th century: rise of the computer
⇒ Bayes’ comeback
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Bayesian paradigm

Bayesian vs. Frequentists: an outdated debate

Fisher firmly rejected Bayesian reasoning
⇒ community split in 2 in the 20th

To be, or not to be, Bayesian, that is no longer the question: it is a
matter of wisely using the right tools when necessary

Gilbert Saporta
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Bayesian modeling
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Refresher on frequentist modeling

• a series of iid (independent and identically distributed) random
variables Y = (Y1, . . . ,Yn)

• we observe a sample y = (y1, . . . ,yn)

• model their probability distribution as f (y|θ), θ ∈Θ

This model assumes there is a “true” distribution of Y characterized by
the “true” value of the parameter θ∗

θ̂ ?
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Historical motivating example

Laplace

What is the probability of birth of girls rather than boys ?
⇒ observations: births observed in Paris between 1745 and 1770

(241,945 girls & 251,527 boys)

When a child is born, is it equally likely to be a girl or a boy ?
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Construction of a Bayesian model

Three building blocks

1 the question

The first step in building a model is always to identify the question you
want to answer

2 the sampling model

Which observations are available to inform our response to this ?
How can they be described?

3 the prior

A probability distribution on the parameters θ of the sampling model
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Construction of a Bayesian model

The sampling model

y : the observations available

⇒ (parametric) probabilistic model underlying their generation:

Yi
iid∼ f (y|θ)
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Construction of a Bayesian model

The prior distribution

In Bayesian modeling, compared to frequentist modeling, we add a
probability distribution on the parameters θ

θ ∼π(θ)

Yi|θ iid∼ f (y|θ)

θ will thus be treated like a random variable,
but which is never observed !
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Construction of a Bayesian model

Back to Laplace’s historical example

1 The question

When a child is born, is it equally likely to be a girl or a boy ?

2 Sampling model

Bernoulli’s law for Yi = 1 if the new born i is a girl, 0 if it is a boy:

Yi ∼Bernoulli(θ) θ ∈ [0,1]

3 prior

A uniform prior on θ (the probability that a newborn would be a girl
rather than a boy):

θ ∼U[0,1]
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Construction of a Bayesian model

Posterior distribution

Purpose of a Bayesian modeling: infer the posterior distribution of the
parameters

• Posterior : the law of θ conditionally on the observations p(θ|y)

Bayes’ theorem:

p(θ|y) = f (y|θ)π(θ)

f (y)

Posterior is calculated from:

1 the sampling model f (y|θ) – which yields the likelihood f (y|θ) for all
observations

2 the prior π(θ)
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Construction of a Bayesian model

Application to the historical example

1 the likelihood

f (y|θ) =
n∏

i=1
θyi (1−θ)(1−yi) = θS(1−θ)n−S where S =

n∑
i=1

yi

2 the prior

Uniform: π(θ) = 1

3 the posterior

p(θ|y) = θS(1−θ)n−S

f (y)
= p(θ|y) =

(
n

S

)
(n+1)θS(1−θ)n−S

To answer the question of interest, we can then calculate:

P(θ ≥ 0.5|y) =
∫ 1

0.5
p(θ|y) =

(
n

S

)
(n+1)

∫ 1

0.5
θS(1−θ)n−Sdθ ≈ 1.15 10−42
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Construction of a Bayesian model

The Beta distribution

f (θ) = (α+β−1)!

(α−1)!(β−1)!
θα−1(1−θ)β−1 for α> 0 and β> 0
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α=0.8 β=3

α=3 β=0.8

Examples of various parametrizations for the Beta distribution
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Construction of a Bayesian model
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Construction of a Bayesian model

Conjugacy of the Beta distribution

Beta prior : π=Beta(α,β)

Corresponding prosterior : . . .

p(θ|y) ∝ θα+S−1(1−θ)β+(n−S)−1

⇒ θ|y∼Beta(α+S, β+ (n−S))

This is called a conjugated distribution because the posterior and the
prior belong to the same parametric family

The ∝ symbol means: “proportional to”
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Construction of a Bayesian model

Impact of the prior choice

Interpretation of the prior Parameters of the Beta distribution P(θ ≥ 0.5|y)
#boys > #girls α= 0.1,β= 3 1.08 10−42

#boys < #girls α= 3, β= 0.1 1.19 10−42

#boys = #girls α= 4, β= 4 1.15 10−42

#boys 6= #girls α= 0.1,β= 0.1 1.15 10−42

non-informative α= 1, β= 1 1.15 10−42

For 493,472 newborns including 241,945 girls

Interpretation of the prior Parameters of the Beta distribution P(θ ≥ 0.5|y)
#boys > #girls α= 0.1,β= 3 0.39
#boys < #girls α= 3, β= 0.1 0.52
#boys = #girls α= 4, β= 4 0.46
#boys 6= #girls α= 0.1,β= 0.1 0.45
non-informative α= 1, β= 1 0.45

For 20 newborns including 9 girls
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Construction of a Bayesian model

Impact of the prior choice for 20 observed births – continued
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Prior choice

Priors: pros & cons

Having a prior distribution:

brings flexibility

allows to incorporate external knowledge

adds intrinsic subjectivity

⇒ choice (or elicitation) of a prior distribution is sensitive !
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Prior choice

Prior properties

1 posterior support must be included in the support of the prior :
if π(θ) = 0, then p(θ|y) = 0

2 independence of the different parameters a priori
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Prior choice

Prior Elicitation

Strategies to communicate with non-statistical experts
⇒ transform their knowledge into prior distribution

• histogram method: experts give weights to ranges of values
B might give a zero prior for plausible parameter values

• choose a parametric family of distributions p(θ|η) in agreement
with what the experts think (e.g. for quantiles or moments)
(solves the support problem but the parametric family has a big impact)

• elicit priors from the literature

• . . .
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Prior choice

The quest for non-informative priors

Sometimes, one has no prior knowledge whatsoever
Which prior distribution to use ?

2 major difficulties:

1 Improper distributions
2 Non-invariant distributions

Other solutions ?
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Prior choice

Jeffreys’ priors

A weakly informative prior invariant through re-parameterization

• unidimensional Jeffreys’ prior :

π(θ) ∝
√

I(θ) where I is Fisher’s information matrix

• multidimensional Jeffreys’ prior :

π(θ) ∝
√

|I(θ)|

In practice, parameter are considered independent a priori
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Going further

Hyper-priors & hierarchical models

Hierarchical levels: 1 π(θ)

2 f (y|θ)

p(θ|y) = f (y|θ)

f (y)
=

∫
f (y|θ,η)π(θ|η)h(η)dη

f (y)

= f (y|θ)
∫
π(θ|η)h(η)dη

f (y)

NB: 3 hierarchical levels ⇔ two levels with prior : π(θ) = ∫
π(θ|η)h(η)dη

⇒ can ease modeling and elicitation of the prior . . .
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Going further

Hyperprior in the historical example

Historical example of birth sex with a Beta prior
⇒ two Gamma hyper-priors for α and β (conjugated):

α∼Gamma(4,0.5)

β∼Gamma(4,0.5)

θ|α,β∼Beta(α,β)

Yi|θ iid∼ Bernoulli(θ)
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Going further

Empirical Bayes

Eliciting the prior according to its empirical marginal distribution
⇒ estimate the prior from the data

1 hyper-parameters

2 estimate them through frequentist methods (e.g. MLE) by η̂

3 plug-in estimates into the prior

4 ⇒ posterior : p(θ|y, η̂)

• Combines Bayesian and frequentist frameworks

• Concentrated posterior (↘ variance) but ↗ bias (data used twice !)

• Approximate a fully Bayesian approach

Bayes intro for medical studies I B. Hejblum

32/45



Introduction to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Going further

Empirical Bayes

Eliciting the prior according to its empirical marginal distribution
⇒ estimate the prior from the data

1 hyper-parameters

2 estimate them through frequentist methods (e.g. MLE) by η̂

3 plug-in estimates into the prior

4 ⇒ posterior : p(θ|y, η̂)

• Combines Bayesian and frequentist frameworks

• Concentrated posterior (↘ variance) but ↗ bias (data used twice !)

• Approximate a fully Bayesian approach

Bayes intro for medical studies I B. Hejblum

32/45



Introduction to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Going further

Sequential Bayes

Bayes’ theorem can be used sequentially:

p(θ|y) ∝ f (y|θ)π(θ)

If y = (y1,y2), then:

p(θ|y) ∝ f (y2|θ)f (y1|θ)π(θ) ∝ f (y2|θ)p(θ|y1)

⇒ posterior distribution updates as new observations are
aquired/available (online updates)
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Bayesian inference
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Bayesian Inference

Bayesian modeling ⇒ posterior distribution:

• all of the information on θ, conditionally to both the model and
the data

Sumary of this posterior distribution ?

• center

• spread

• . . .
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Point estimates

Decision theory

Context: estimating an unknown parameterθ

Decision: choice of an “optimal” point estimator θ̂

cost function: quantify the penalty associated with the choice of a
particular θ̂

⇒ minimize the cost function to choose the optimal θ̂

a large number of cost functions are available: each one yields a different point
estimator based on its own minimum rule
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Point estimates

Point estimates

• Posterior mean: µP = E(θ|y) = Eθ|y(θ)

not always easy because it assumes the calculation of an integral. . .
⇒ minimize the quadratic error cost

• Maximum A Posteriori (MAP):
easy(ier) to compute: just a simple maximization of the posterior
f (y|θ)π(θ)

• Posterior median: the median of p(θ|(y))
⇒ minimize the absolute error cost

B the Bayesian approach gives a full characterization of the
posterior distribution that goes beyond point estimation
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Point estimates

MAP on the historical example

Maximum A Posteriori on the historical example of feminine birth in
Paris with a uniform prior:

p(θ|y) =
(

n

S

)
(n+1)θS(1−θ)n−S

with n = 493,472 et S = 241,945

θ̂MAP = S

n
= 0.4902912
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Point estimates

Posterior mean on the historical example

Posterior mean on the historical example of feminine birth in Paris with a
uniform prior:

p(θ|y) =
(

n

S

)
(n+1)θS(1−θ)n−S

with n = 493,472 et S = 241,945

E(θ|y) =
∫ 1

0
θp(θ|y)dθ

θ̃ =
(

n

S

)
(n+1)

S+1(
n

S

)
(n+1)(n+2)

= S+1

n+2
= 0.4902913
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Uncertainty

Confidence Interval reminder

What is the interpretation of a frequentist confidence interval at a 95%
level ?
. . .
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Uncertainty

Confidence Interval reminder

What is the interpretation of a frequentist confidence interval at a 95%
level ?

95% of the intervals computed on all possible samples (all those
that could have been observed) contain the true value θ

Warning: one cannot interpret a realization of a confidence interval in probabilistic
terms ! It is a common mistake. . .
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Uncertainty

Credibility interval

The credibility interval is interpreted much more naturally than the
confidence interval:

It is an interval that has a 95% chance of containing θ

(for a 95% level, obviously)

Defined as an interval with a high posterior probability of occurrence.

For example, a 95% credibility interval is an interval [tinf , tsup] such

that
∫ tsup

tinf

p(θ|y)dθ = 0.95

NB: usually interested in the shortest possible 95% credibility interval
(also called Highest Density Interval).
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Uncertainty

Bayes Factor

Bayes Factor: marginal likelihood ratio between two hypotheses

BF10 = f (y|H1)

f (y|H0)

⇒ favored support for either hypothesis from the observed data y

Posterior odds

p(H1|y)

p(H0|y)
= BF10 × p(H1)

p(H0)
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Asymptotics

Concentration of the posterior
Doob’s convergence

→ Seeing Theory, Brown University
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Asymptotics

Normal approximation

Bernstein-von Mises Theorem (or Bayesian central-limit theorem):
For a large n the posterior can be approximated by a normal distribution.

p(θ|y) ≈N (θ̂, I(θ̂)−1)

Consequences:

• Bayesian methods and frequentist procedures based on maximum
likelihood give, for large enough n, very close results

• the posterior can be computed as a normal whose mean and
variance we can calculate simply using the MAP
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Conclusion
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Essential concepts

1 Bayesian modeling:

θ ∼π(θ) the prior

Yi|θ iid∼ f (y|θ) sampling model

2 Bayes’ formula: p(θ|y) = f (y|θ)π(θ)

f (y)
with p(θ|y) the posterior, f (y|θ) the likelihood (inherited from the sampling
model), π(θ) the prior and f (y) = ∫

f (y|θ)π(θ) is the marginal distribution of the
data, i.e. the normalizing constant (with respect to θ)

3 The posterior distribution is given by:

p(θ|y) ∝ f (y|θ)π(θ)

4 Posterior mean, MAP, and credibility intervals
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Practical use

The Bayesian framework is (just) another statistical tool for data analysis

Particularly useful when:

• few observations only are available

• there is important knowledge a priori

Like any statistical method, Bayesian analysis has advantages and
disadvantages that will be more or less important depending on the
application considered.
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Questions ?
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