Bayesian modeling

Bayesian Inference

Introduction to Bayesian analysis for medical studies Part I: Bayesian theory

Boris Hejblum Université de Bordeaux, ISPED, Inserm BPH U1219/Inria SISTM, Bordeaux, France

> boris.hejblum@u-bordeaux.fr https://borishejblum.science

Graduate School of Health and Medical Sciences at the University of Copenhagen May 13th, 2019

Institut national de la santé et de la recherche médicale

Bayesian modeling 000000000000000000000000

Nice to meet you

First things first: a show of hands

- who has used **R** before?
- who knows what does Maximum Likelihood Estimator means ?
- who is afraid/uncomfortable with math formulas ?
- who knows what a regression/linear model is ?
- who has ever heard of random-effects before ?

 $\Rightarrow\,$ What do you do, and what are your expectations from this course ?

Bayesian Inference

Conclusion 000

Bayesian vocabulary

- paradigm
- a priori
- a posteriori
- elicitation

Bayesian Inference

Course objectives

- **1** Familiarize oneself with the Bayesian framework:
 - understand and assess a Bayesian modeling strategy, and discuss its underlying assumptions
 - 2 rigorously describe expert knowledge by a quantitative prior distribution

2 Study and perform Bayesian analyses in biomedical applications:

- understand, discuss and reproduce a Bayesian (re-)estimation of a Relative Risk
- $_{2}$ understand and perform a Bayesian meta-analysis using $\mathbb R$
- 3 understand and explain an adaptive design for Phase I/II trials and the associated decision-rule

 ${\bf NB}$: this course is by no means exhaustive, and the curious reader will be referred to more complete works such as *The Bayesian Choice* by C Robert.

Introduction

Introduction to Bayesian statistics		
●000000		
Frequentist statistics		

Statistics:

- a mathematical science
- to describe what has happened and
- to assess what may happen in the future
- relies on the **observation** of natural phenomena in order to propose an interpretation, often through **probabilistic models**

Introduction to Bayesian statistics		
•000000		
Frequentist statistics		

Statistics:

- a mathematical science
- to describe what has happened and
- to assess what may happen in the future
- relies on the **observation** of natural phenomena in order to propose an interpretation, often through **probabilistic models**

Frequentist statistics:

- Neyman & Pearson
- deterministic view of the parameters
- Maximum Likelihood Estimation
- statistical test theory & confidence interval

Introduction to Bayesian statistics		
○●○○○○○		
Bayesian paradigm		

Bayes' theorem

Reverend Thomas Bayes posthumous article in 1763

$$\Pr(A|E) = \frac{\Pr(E|A)\Pr(A)}{\Pr(E|A)\Pr(A) + \Pr(E|\overline{A})\Pr(\overline{A})} = \frac{\Pr(E|A)\Pr(A)}{\Pr(E)}$$

(conditional probability formula: $Pr(A|E) = \frac{Pr(A \cap E)}{Pr(E)}$)

Bayes' theorem

Reverend Thomas Bayes posthumous article in 1763

 $\Pr(A|E) = \frac{\Pr(E|A)\Pr(A)}{\Pr(E|A)\Pr(A) + \Pr(E|\overline{A})\Pr(\overline{A})} = \frac{\Pr(E|A)\Pr(A)}{\Pr(E)}$

(conditional probability formula: $Pr(A|E) = \frac{Pr(A \cap E)}{Pr(E)}$)

In practice:

Last time you visited the doctor, you got **tested for a rare disease**. Unluckily, the result was positive...

Given the test result, what is the probability that I actually have this disease?

(Medical tests are, after all, not perfectly accurate.)

→ Seeing Theory. Brown University

Bayesian paradigm

Bayes theorem: exercise

1% of the population is affected by this rare disease. A medical test has the following properties:

- if someone has the disease, its test will come out positive 99% of the time
- if someone does not have the disease, its test will come out negative 95% of the time

Given that someone got a positive result, what is his/her probability to have the disease ?

Bayesian paradigm

Bayes theorem: exercise

1% of the population is affected by this rare disease. A medical test has the following properties:

- if someone has the disease, its test will come out positive 99% of the time
- if someone does not have the disease, its test will come out negative 95% of the time

Given that someone got a positive result, what is his/her probability to have the disease ?

 $\Pr(M = +) = 0.01$ $\Pr(T = +|M = +) = 0.99$ $\Pr(T = -|M = -) = 0.95$

Bayesian paradigm

Bayes theorem: exercise

1% of the population is affected by this rare disease. A medical test has the following properties:

- if someone has the disease, its test will come out positive 99% of the time
- if someone does not have the disease, its test will come out negative 95% of the time

Given that someone got a positive result, what is his/her probability to have the disease ?

$$\Pr(M = +) = 0.01$$
 $\Pr(T = +|M = +) = 0.99$ $\Pr(T = -|M = -) = 0.95$

$$\Pr(M = + | T = +) = ?$$

Bayesian paradigm

Bayes theorem: exercise

1% of the population is affected by this rare disease. A medical test has the following properties:

- if someone has the disease, its test will come out positive 99% of the time
- if someone does not have the disease, its test will come out negative 95% of the time

Given that someone got a positive result, what is his/her probability to have the disease ?

$$\Pr(M = +) = 0.01$$
 $\Pr(T = +|M = +) = 0.99$ $\Pr(T = -|M = -) = 0.95$

$$Pr(M = +|T = +) = \frac{Pr(T = +|M = +)Pr(M = +)}{Pr(T = +)}$$
$$= \frac{Pr(T = +|M = +)Pr(M = +)}{Pr(T = +|M = +)Pr(M = +)}$$
$$= \frac{Pr(T = +|M = +)Pr(M = +)}{Pr(T = +|M = +)Pr(M = +) + (1 - Pr(T = -|M = -))(1 - Pr(M = +))}$$
$$= 0.17$$

Bayesian modeling

Bayesian Inference

Conclusion 000

Bayesian paradigm

Continuous Bayes' theorem

- parametric (probabilistic) model $f(y|\theta)$
- parameters θ
- probability distribution π

Continuous Bayes' theorem:

$$p(\theta|y) = \frac{f(y|\theta)\pi(\theta)}{\int f(y|\theta)\pi(\theta) \,\mathrm{d}\theta}$$

Bayesian modeling

Bayesian Inference

Conclusion 000

Bayesian paradigm

Continuous Bayes' theorem

- parametric (probabilistic) model $f(y|\theta)$
- parameters θ
- probability distribution π

Continuous Bayes' theorem:

$$p(\theta|y) = \frac{f(y|\theta)\pi(\theta)}{\int f(y|\theta)\pi(\theta) \,\mathrm{d}\theta}$$

remember Pierre-Simon de Laplace !

Introduction to Bayesian statistics		
0000000		
Bayesian paradigm		
Bayes philosophy		

Parameters are random variables ! - no "true" value

- \Rightarrow induces a marginal probability distribution $\pi(\theta)$ on the parameters: the **prior** distribution
 - e allows to formally take into account hypotheses in the modeling
 - e necessarily introduces **subjectivity** into the analysis

Bayesian vs. Frequentists: a historical note

- Bayes + Laplace ⇒ development of statistics in the 18-19th centuries
- ② Galton & Pearson, then Fisher & Neymann \Rightarrow frequentist theory became dominant during the 20th century
- 3 turn of the 21th century: rise of the computer ⇒ Bayes' comeback

Bayesian Inference

Conclusion 000

Bayesian paradigm

Bayesian vs. Frequentists: an outdated debate

Fisher firmly rejected Bayesian reasoning ⇒ community split in 2 in the 20th

Bayesian Inference

Conclusion 000

Bayesian paradigm

Bayesian vs. Frequentists: an outdated debate

Fisher firmly rejected Bayesian reasoning

 \Rightarrow community split in 2 in the 20th

To be, or not to be, Bayesian, that is no longer the question: it is a matter of wisely using the right tools when necessary

Gilbert Saporta

Bayesian modeling

Bayes intro for medical studies I

B. Hejblum

• a series of *iid* (independent and identically distributed) random variables $\mathbf{Y} = (Y_1, \dots, Y_n)$

- a series of *iid* (independent and identically distributed) random variables **Y** = (*Y*₁,..., *Y*_n)
- we observe a sample $\mathbf{y} = (y_1, \dots, y_n)$

- a series of *iid* (independent and identically distributed) random variables $\mathbf{Y} = (Y_1, \dots, Y_n)$
- we observe a sample $\mathbf{y} = (y_1, \dots, y_n)$
- model their probability distribution as $f(y|\theta), \ \theta \in \Theta$

- a series of *iid* (independent and identically distributed) random variables Y = (Y₁,..., Y_n)
- we observe a sample $\mathbf{y} = (y_1, \dots, y_n)$
- model their probability distribution as $f(y|\theta), \ \theta \in \Theta$

This model assumes there is a "true" distribution of Y characterized by the "true" value of the parameter θ^*

$$\hat{\theta}$$
 ?

Bayesian modeling

Bayesian Inference

Conclusion 000

Historical motivating example

Laplace

What is the probability of birth of girls rather than boys ?

 \Rightarrow observations: births observed in Paris between 1745 and 1770 (241,945 girls & 251,527 boys)

When a child is born, is it equally likely to be a girl or a boy ?

Three building blocks

1 the question

2 the sampling model

3 the prior

Construction of a Bayesian model

Three building blocks

1 the question

The first step in building a model is always to identify the question you want to answer

2 the sampling model

3 the prior

Construction of a Bayesian model

Three building blocks

1 the question

The first step in building a model is always to identify the question you want to answer

2 the sampling model

Which **observations** are available to inform our response to this ? How can they be **described**?

3 the prior

Construction of a Bayesian model

Three building blocks

1 the question

The first step in building a model is always to identify the question you want to answer

2 the sampling model

Which **observations** are available to inform our response to this ? How can they be **described**?

3 the prior

A probability distribution on the parameters θ of the sampling model

	Bayesian modeling	
Construction of a Bayesian model		
The sampling model		

- y: the observations available
- \Rightarrow (parametric) **probabilistic model** underlying their **generation**:

 $Y_i \stackrel{iid}{\sim} f(y|\theta)$

In Bayesian modeling, compared to frequentist modeling, we add a probability distribution on the parameters θ

 $\theta \sim \pi(\theta)$ $Y_i | \theta \stackrel{iid}{\sim} f(y|\theta)$

 θ will thus be treated like a random variable, but which is never observed !

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Back to Laplace's historical example

1 The question

2 Sampling model

3 prior

B. Hejblum

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Back to Laplace's historical example

1 The question

...

2 Sampling model

...

3 prior

. . .

17/45

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Back to Laplace's historical example

1 The question

When a child is born, is it equally likely to be a girl or a boy ?

2 Sampling model

. . .

3 prior

. . .

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Back to Laplace's historical example

1 The question

When a child is born, is it equally likely to be a girl or a boy ?

2 Sampling model

Bernoulli's law for $Y_i = 1$ if the new born *i* is a girl, 0 if it is a boy:

 $Y_i \sim \mathsf{Bernoulli}(\theta) \qquad \theta \in [0,1]$

3 prior

Bayes intro for medical studies I

17/45

Construction of a Bayesian model

Back to Laplace's historical example

1 The question

When a child is born, is it equally likely to be a girl or a boy ?

2 Sampling model

Bernoulli's law for $Y_i = 1$ if the new born *i* is a girl, 0 if it is a boy:

 $Y_i \sim \text{Bernoulli}(\theta)$ $\theta \in [0,1]$

3 prior

A uniform prior on θ (the probability that a newborn would be a girl rather than a boy):

$$\theta \sim \mathcal{U}_{[0,1]}$$
	Bayesian modeling ○○○○○●○○○○○○○○○○○○○○	
Construction of a Bayesian model		

Posterior distribution

Purpose of a Bayesian modeling: **infer the** *posterior* distribution of the **parameters**

• **Posterior**: the law of θ conditionally on the observations $p(\theta|\mathbf{y})$

				Bayesian modeling	
				000000000000000000000000000000000000000	
Construction	n of a E	Bayesian	model		
-					

Posterior distribution

Purpose of a Bayesian modeling: **infer the** *posterior* distribution of the **parameters**

• **Posterior**: the law of θ conditionally on the observations $p(\theta|\mathbf{y})$

Bayes' theorem:

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$$

	Bayesian modeling	
	00 00000000000 0000000000	
Construction of a Bayesian model		

Posterior distribution

Purpose of a Bayesian modeling: **infer the** *posterior* distribution of the **parameters**

• **Posterior**: the law of θ conditionally on the observations $p(\theta|\mathbf{y})$

Bayes' theorem:

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$$

Posterior is calculated from:

- **1** the sampling model $f(y|\theta)$ which yields the likelihood $f(y|\theta)$ for all observations
- 2 the prior $\pi(\theta)$

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Application to the historical example

1 the likelihood

2 the prior

3 the posterior

19/45

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Application to the historical example

1 the likelihood

2 the prior

. . .

. . .

3 the posterior

. . .

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Application to the historical example

1 the likelihood

$$f(\mathbf{y}|\theta) = \prod_{i=1}^{n} \theta^{y_i} (1-\theta)^{(1-y_i)} = \theta^S (1-\theta)^{n-S} \quad \text{where } S = \sum_{i=1}^{n} y_i$$

2 the prior

· · ·

3 the posterior

. . .

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Application to the historical example

1 the likelihood

$$f(y|\theta) = \prod_{i=1}^{n} \theta^{y_i} (1-\theta)^{(1-y_i)} = \theta^S (1-\theta)^{n-S} \quad \text{where } S = \sum_{i=1}^{n} y_i$$

2 the prior

Uniform: $\pi(\theta) = 1$

3 the posterior

. . .

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Application to the historical example

1 the likelihood

$$f(\mathbf{y}|\theta) = \prod_{i=1}^{n} \theta^{y_i} (1-\theta)^{(1-y_i)} = \theta^S (1-\theta)^{n-S} \quad \text{where } S = \sum_{i=1}^{n} y_i$$

2 the prior

Uniform: $\pi(\theta) = 1$

3 the posterior

$$p(\theta|\mathbf{y}) = \frac{\theta^{S}(1-\theta)^{n-S}}{f(\mathbf{y})} = p(\theta|\mathbf{y}) = \binom{n}{S}(n+1)\theta^{S}(1-\theta)^{n-S}$$

Bayes intro for medical studies I

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Application to the historical example

1 the likelihood

$$f(\mathbf{y}|\theta) = \prod_{i=1}^{n} \theta^{y_i} (1-\theta)^{(1-y_i)} = \theta^S (1-\theta)^{n-S} \quad \text{where } S = \sum_{i=1}^{n} y_i$$

2 the prior

Uniform: $\pi(\theta) = 1$

3 the posterior

$$p(\theta|\mathbf{y}) = \frac{\theta^{S}(1-\theta)^{n-S}}{f(\mathbf{y})} = p(\theta|\mathbf{y}) = \binom{n}{S}(n+1)\theta^{S}(1-\theta)^{n-S}$$

To answer the question of interest, we can then calculate: ...

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Application to the historical example

1 the likelihood

$$f(\mathbf{y}|\theta) = \prod_{i=1}^{n} \theta^{y_i} (1-\theta)^{(1-y_i)} = \theta^S (1-\theta)^{n-S} \quad \text{where } S = \sum_{i=1}^{n} y_i$$

2 the prior

Uniform: $\pi(\theta) = 1$

3 the posterior

$$p(\theta|\mathbf{y}) = \frac{\theta^{S}(1-\theta)^{n-S}}{f(\mathbf{y})} = p(\theta|\mathbf{y}) = \binom{n}{S}(n+1)\theta^{S}(1-\theta)^{n-S}$$

To answer the question of interest, we can then calculate:

$$P(\theta \ge 0.5 | \mathbf{y}) = \int_{0.5}^{1} p(\theta | \mathbf{y}) = \binom{n}{S} (n+1) \int_{0.5}^{1} \theta^{S} (1-\theta)^{n-S} d\theta \approx 1.15 \ 10^{-42}$$

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

The Beta distribution

$$f(\theta) = \frac{(\alpha + \beta - 1)!}{(\alpha - 1)!(\beta - 1)!} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \text{ for } \alpha > 0 \text{ and } \beta > 0$$

Examples of various parametrizations for the Beta distribution

		Baye
		0000

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Conjugacy of the Beta distribution

Beta *prior*: $\pi = \text{Beta}(\alpha, \beta)$

22/45

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

. . .

Conjugacy of the Beta distribution

Beta *prior*: $\pi = \text{Beta}(\alpha, \beta)$

Corresponding *prosterior*: $p(\theta|\mathbf{y}) \propto \theta^{\alpha+S-1}(1-\theta)^{\beta+(n-S)-1}$

The \propto symbol means: "proportional to"

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Conjugacy of the Beta distribution

Beta *prior*: $\pi = Beta(\alpha, \beta)$

Corresponding *prosterior*: $p(\theta|\mathbf{y}) \propto \theta^{\alpha+S-1}(1-\theta)^{\beta+(n-S)-1}$

 $\Rightarrow \theta | \mathbf{y} \sim \text{Beta}(\alpha + S, \beta + (n - S))$

The \propto symbol means: "proportional to"

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Conjugacy of the Beta distribution

Beta *prior*: $\pi = Beta(\alpha, \beta)$

Corresponding *prosterior*: $p(\theta|\mathbf{y}) \propto \theta^{\alpha+S-1}(1-\theta)^{\beta+(n-S)-1}$ $\Rightarrow \theta|\mathbf{y} \sim \text{Beta}(\alpha+S, \beta+(n-S))$

This is called a **conjugated distribution** because the **posterior** and the **prior** belong to the **same parametric family**

The \propto symbol means: "proportional to"

Construction of a Bayesian model

Impact of the prior choice

Interpretation of the prior	Parameters of the Beta distribution	$P(\theta \ge 0.5 \mathbf{y})$
#boys > #girls	$\alpha = 0.1, \beta = 3$	$1.08 \ 10^{-42}$
#boys < #girls	$\alpha = 3, \beta = 0.1$	$1.19 10^{-42}$
#boys = #girls	$\alpha = 4, \beta = 4$	$1.15 10^{-42}$
#boys ≠ #girls	$\alpha = 0.1, \beta = 0.1$	$1.15 \ 10^{-42}$
non-informative	$\alpha = 1, \beta = 1$	$1.15 \ 10^{-42}$
E 100 4		

For 493,472 newborns including 241,945 girls

Construction of a Bayesian model

Impact of the prior choice

Interpretation of the prior	Parameters of the Beta distribution	$P(\theta \ge 0.5 \mathbf{y})$
#boys > #girls	$\alpha = 0.1, \beta = 3$	$1.08 \ 10^{-42}$
#boys < #girls	$\alpha = 3, \beta = 0.1$	$1.19 \ 10^{-42}$
#boys = #girls	$\alpha = 4, \beta = 4$	$1.15 10^{-42}$
#boys ≠ #girls	$\alpha = 0.1, \beta = 0.1$	$1.15 \ 10^{-42}$
non-informative	$\alpha = 1, \beta = 1$	$1.15 10^{-42}$

For 493,472 newborns including 241,945 girls

Interpretation of the prior	Parameters of the Beta distribution	$P(\theta \ge 0.5 \mathbf{y})$
#boys > #girls	$\alpha = 0.1, \beta = 3$	0.39
#boys < #girls	$\alpha = 3, \beta = 0.1$	0.52
#boys = #girls	$\alpha = 4, \beta = 4$	0.46
#boys ≠ #girls	$\alpha = 0.1, \beta = 0.1$	0.45
non-informative	$\alpha = 1, \beta = 1$	0.45

For 20 newborns including 9 girls

Bayesian modeling

Bayesian Inference

Conclusion 000

Construction of a Bayesian model

Impact of the prior choice for 20 observed births - continued

Priors: pros & cons

Having a *prior* distribution:

e brings **flexibility**

😁 allows to incorporate external knowledge

adds intrinsic subjectivity

⇒ choice (or elicitation) of a *prior* distribution is sensitive !

	Bayesian modeling	
	000000000000 00000 0000	
Prior choice		
Prior properties		

- **1** *posterior* support must be included in the support of the prior: if $\pi(\theta) = 0$, then $p(\theta|\mathbf{y}) = 0$
- 2 independence of the different parameters a priori

Prior Elicitation

Strategies to communicate with non-statistical experts

 \Rightarrow transform their **knowledge** into *prior* distribution

- histogram method: experts give weights to ranges of values
 <u>A</u> might give a zero prior for plausible parameter values
- choose a parametric family of distributions p(θ|η) in agreement with what the experts think (e.g. for quantiles or moments) (solves the support problem but the parametric family has a big impact)
- elicit priors from the literature

• . . .

The quest for non-informative priors

Sometimes, one has **no prior knowledge whatsoever** Which *prior* distribution to use ?

The quest for non-informative *priors*

Sometimes, one has no prior knowledge whatsoever

 \Rightarrow the Uniform distribution, a **non-informative prior** ?

The quest for non-informative priors

Sometimes, one has no prior knowledge whatsoever

⇒ the Uniform distribution, a **non-informative prior** ?

2 major difficulties:

- 1 Improper distributions
- 2 Non-invariant distributions

The quest for non-informative priors

Sometimes, one has no prior knowledge whatsoever

 \Rightarrow the Uniform distribution, a **non-informative prior** ?

2 major difficulties:

- 1 Improper distributions
- 2 Non-invariant distributions

Other solutions ?

A weakly informative prior invariant through re-parameterization

• unidimensional Jeffreys' prior:

 $\pi(\theta) \propto \sqrt{I(\theta)}$ where I is Fisher's information matrix

• multidimensional Jeffreys' prior:

 $\pi(\theta) \propto \sqrt{|I(\theta)|}$

In practice, parameter are considered independent a priori

Bayesian modeling

Bayesian Inferenc

Conclusion 000

Going further

Hyper-priors & hierarchical models

Hierarchical levels:

1 $\pi(\theta)$

2 $f(y|\theta)$

Bayesian modeling

Bayesian Inference

Conclusion 000

Going further

Hyper-*priors* & hierarchical models

Hierarchical levels:

1 $\eta \sim h(\eta)$

2 $\pi(\theta|\eta)$

 $\Im f(y|\theta)$

30/45

Hierarchical levels:

1 $\eta \sim h(\eta)$

2 $\pi(\theta|\eta)$

3 $f(y|\theta)$

 $p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$

Bavesian modeling Going further Hyper-*priors* & hierarchical models **Hierarchical levels:** 1 $\eta \sim h(\eta)$ **2** $\pi(\theta|\eta)$ $f(\mathbf{y}|\boldsymbol{\theta})$ $p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$

NB: 3 hierarchical levels \Leftrightarrow two levels with *prior*: $\pi(\theta) = \int \pi(\theta|\eta) h(\eta) d\eta$

Bavesian modeling Going further Hyper-*priors* & hierarchical models **Hierarchical levels:** 1 $\eta \sim h(\eta)$ **2** $\pi(\theta|\eta)$ $f(\mathbf{y}|\boldsymbol{\theta})$ $p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$

NB: 3 hierarchical levels \Leftrightarrow two levels with *prior*: $\pi(\theta) = \int \pi(\theta|\eta) h(\eta) d\eta$

⇒ can ease modeling and elicitation of the prior...

30/45

Going further

Hyperprior in the historical example

Historical example of birth sex with a Beta *prior* \Rightarrow two Gamma hyper-*priors* for α and β (conjugated):

> $\alpha \sim \text{Gamma}(4, 0.5)$ $\beta \sim \text{Gamma}(4, 0.5)$ $\theta | \alpha, \beta \sim \text{Beta}(\alpha, \beta)$ $Y_i | \theta \stackrel{iid}{\sim} \text{Bernoulli}(\theta)$

	Bayesian modeling ○○○○○○○○○○○○○○○○○○	
Going further		
Empirical Bayes		

Eliciting the prior according to its empirical marginal distribution

- \Rightarrow estimate the *prior* from the data
 - 1 hyper-parameters
 - 2 estimate them through frequentist methods (e.g. MLE) by $\hat{\eta}$
 - 3 plug-in estimates into the prior
 - **4** \Rightarrow posterior: $p(\theta|\mathbf{y}, \hat{\eta})$

	Bayesian modeling ○○○○○○○○○○○○○○○○○○	
Going further		
Empirical Bayes		

Eliciting the prior according to its empirical marginal distribution

- \Rightarrow estimate the *prior* from the data
 - hyper-parameters
 - 2 estimate them through frequentist methods (e.g. MLE) by $\hat{\eta}$
 - 3 plug-in estimates into the prior
 - **4** \Rightarrow posterior: $p(\theta|\mathbf{y}, \hat{\eta})$
 - Combines Bayesian and frequentist frameworks
 - Concentrated *posterior* (∖ variance) but ∕ bias (data used twice !)
 - Approximate a fully Bayesian approach

	Bayesian modeling ○○○○○○○○○○○○○○○○○○○○○○	
Going further		
Sequential Bayes		

Bayes' theorem can be used sequentially:

 $p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta) \pi(\theta)$

If $\boldsymbol{y} = (\boldsymbol{y}_1, \boldsymbol{y}_2)$, then:

 $p(\theta|\mathbf{y}) \propto f(\mathbf{y}_2|\theta) f(\mathbf{y}_1|\theta) \pi(\theta) \propto f(\mathbf{y}_2|\theta) p(\theta|\mathbf{y}_1)$

⇒ posterior distribution updates as new observations are aquired/available (online updates)
Bayesian inference

Bayesian Inference

Bayesian modeling \Rightarrow *posterior* distribution:

• all of the information on θ , conditionally to both the model and the data

Bayesian Inference

Bayesian modeling \Rightarrow *posterior* distribution:

• all of the information on θ , conditionally to both the model and the data

Sumary of this posterior distribution ?

- center
- spread
- . . .

<u>Context</u>: estimating an unknown parameter θ

Decision: choice of an "optimal" point estimator $\hat{\theta}$

 \mathbf{cost} function: quantify the penalty associated with the choice of a particular $\widehat{\theta}$

 \Rightarrow minimize the cost function to choose the optimal $\widehat{ heta}$

a large number of cost functions are available: each one yields a different point estimator based on its own minimum rule

	Bayesian Inference ○○●○○○○○○○	
Point estimates		

Point estimates

• **Posterior** mean: $\mu_P = \mathbb{E}(\theta|\mathbf{y}) = \mathbb{E}_{\theta|\mathbf{y}}(\theta)$

not always easy because it assumes the calculation of an integral. . . \Rightarrow minimize the quadratic error cost

- Maximum A Posteriori (MAP): easy(ier) to compute: just a simple maximization of the posterior $f(\mathbf{y}|\theta)\pi(\theta)$
- **Posterior median:** the median of $p(\theta|(y))$
 - \Rightarrow minimize the absolute error cost

 $\underline{\land}$ the Bayesian approach gives a full characterization of the *posterior* distribution that goes beyond point estimation

Bayesian Inference

Conclusion 000

Point estimates

MAP on the historical example

Maximum *A Posteriori* on the historical example of feminine birth in Paris with a uniform prior:

$$p(\theta|\mathbf{y}) = \binom{n}{S} (n+1)\theta^{S} (1-\theta)^{n-S}$$

with n = 493,472 et S = 241,945

$$\widehat{\theta}_{MAP} = \frac{S}{n} = 0.4902912$$

37/45

ntroduction to Bayesian statistics Baye 000000 000

Bayesian modeling

Bayesian Inference

Conclusion 000

Point estimates

Posterior mean on the historical example

Posterior mean on the historical example of feminine birth in Paris with a uniform prior:

$$p(\theta|\mathbf{y}) = \binom{n}{S} (n+1)\theta^{S} (1-\theta)^{n-S}$$

with n = 493,472 et S = 241,945

$$E(\theta|\mathbf{y}) = \int_0^1 \theta p(\theta|\mathbf{y}) \mathrm{d}\theta$$

$$\tilde{\theta} = \binom{n}{S}(n+1)\frac{S+1}{\binom{n}{S}(n+1)(n+2)} = \frac{S+1}{n+2} = 0.4902913$$

Bayesian Inference

Conclusion 000

Uncertainty

Confidence Interval reminder

What is the interpretation of a frequentist confidence interval at a 95% level ?

. . .

Bayesian modeling

Bayesian Inference

Conclusion 000

Uncertainty

Confidence Interval reminder

What is the interpretation of a frequentist confidence interval at a 95% level ?

95% of the intervals computed on all possible samples (all those that could have been observed) contain the true value θ

Warning: one cannot interpret a realization of a confidence interval in probabilistic terms ! It is a common mistake...

	Bayesian Inference ○○○○○●○○○	
Uncertainty		
Credibility interval		

The **credibility interval** is interpreted much more naturally than the confidence interval:

It is an interval that has a 95% chance of containing θ (for a 95% level, obviously)

Defined as an interval with a high *posterior* probability of occurrence. For example, a **95% credibility interval** is an interval $[t_{inf}, t_{sup}]$ such that $\int_{t_{inf}}^{t_{sup}} p(\theta|\mathbf{y}) d\theta = 0.95$

NB: usually interested in the shortest possible 95% credibility interval (also called Highest Density Interval).

Bayes Factor: marginal likelihood ratio between two hypotheses

 $BF_{10} = \frac{f(\boldsymbol{y}|H_1)}{f(\boldsymbol{y}|H_0)}$

 \Rightarrow favored support for either hypothesis from the observed data y

Posterior odds

$$\frac{p(H_1|\mathbf{y})}{p(H_0|\mathbf{y})} = BF_{10} \times \frac{p(H_1)}{p(H_0)}$$

Bayesian modeling 0000000000000000000000000 Bayesian Inference

Conclusion 000

Asymptotics

Concentration of the posterior

Doob's convergence

→ Seeing Theory, Brown University

Bernstein-von Mises Theorem (or Bayesian central-limit theorem): For a large n the *posterior* can be approximated by a normal distribution.

 $p(\boldsymbol{\theta}|\boldsymbol{y}) \approx \mathcal{N}(\hat{\boldsymbol{\theta}}, I(\hat{\boldsymbol{\theta}})^{-1})$

Consequences:

- Bayesian methods and frequentist procedures based on maximum likelihood give, for large enough *n*, very close results
- the *posterior* can be computed as a normal whose mean and variance we can calculate simply using the MAP

Conclusion

Essential concepts

Bayesian modeling:

 $\theta \sim \pi(\theta)$ the prior $Y_i | \theta \stackrel{iid}{\sim} f(y|\theta)$ sampling model

2 Bayes' formula: $p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$

with $p(\theta|\mathbf{y})$ the posterior, $f(\mathbf{y}|\theta)$ the likelihood (inherited from the sampling model), $\pi(\theta)$ the prior and $f(\mathbf{y}) = \int f(\mathbf{y}|\theta)\pi(\theta)$ is the marginal distribution of the data, i.e. the normalizing constant (with respect to θ)

3 The posterior distribution is given by:

 $p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta) \pi(\theta)$

4 Posterior mean, MAP, and credibility intervals

Practical use

The Bayesian framework is (just) another statistical tool for data analysis

Particularly useful when:

- few observations only are available
- there is important knowledge a priori

Like any statistical method, Bayesian analysis has advantages and disadvantages that will be more or less important depending on the application considered.

Bayesian modeling

Bayesian Inference

Questions ?

