# Introduction to Bayesian analysis for medical studies

Part III: Bayesian applications in biomedical sciences

Boris Hejblum

Université de Bordeaux, ISPED, Inserm BPH U1219/Inria SISTM, Bordeaux, France

boris.hejblum@u-bordeaux.fr https://borishejblum.science

Graduate School of Health and Medical Sciences at the University of Copenhagen May 14<sup>th</sup>, 2019

université

BORDEAUX







Introduction

# Examples of Bayesian applications

3 different real-world use cases in biomedical sciences: illustrations where the Bayesian approach can be particularly useful

- a meta-analysis short-course
- an adaptive design in clinical trials short-course

Post-mortem re-analysis of an under-powered randomized trial

# Original analysis of EOLIA

### **EOLIA** (Combes et al., NEJM, 2018):

- randomized clinical trial
- evaluation of a new treatment for severe acute respiratory distress syndrome
- outcome: mortality rate after 60 days
- 249 patients:
  - 125 controls
    - ⇒ mechanical ventilation (conventional treatment)
  - 124 treated
    - ⇒ ECMO (extracorporeal membrane oxygenation new(er) treatment)

#### Frequentist analysis:

⇒ Relative Risk of death at 60 days for ECMO compared to control: 0.76

```
CI_{95\%} = [0.55, 1.04]
```

p-value = 0.09.

# Bayesian re-analysis of EOLIA data

Goligher et al. (JAMA, 2018)

|                             | Group |         |
|-----------------------------|-------|---------|
|                             | ECMO  | Control |
| group size n                | 124   | 125     |
| number of deaths at 60 days | 44    | 57      |

Observed data in the EOLIA trial

### Your turn!



Practical: exercise 5

Bayesian meta-analysis

# What is a meta-analysis

"An analysis of analyses"

⇒ a single quantitative summary of studies answering the *same research* question

<u>Ex:</u> medical therapies effects are often evaluated in multiple different studies.

# What is a meta-analysis

"An analysis of analyses"

⇒ a single quantitative summary of studies answering the *same research* question

 $\underline{\mathsf{Ex}}$ : medical therapies effects are often evaluated in multiple different studies.

⇒ pool individual observations from multiple studies ?

### What is a meta-analysis

- "An analysis of analyses"
- ⇒ a single quantitative summary of studies answering the *same research* question

<u>Ex:</u> medical therapies effects are often evaluated in multiple different studies.

- ⇒ pool individual observations from multiple studies ?
  - potential differences in the pooled experiments
  - ∧ only aggregated summary statistics estimates ("effect sizes") available
    - alongside uncertainty (e.g. standard errors)

# Study Heterogeneity

∧ variations of the observed effects...

# Study Heterogeneity

- ♠ variations of the observed effects...
  - within-study uncertainty, or
  - real heterogeneity in effect size between the different studies

# Study Heterogeneity

- ∧ variations of the observed effects...
  - within-study uncertainty, or
  - real heterogeneity in effect size between the different studies

Often, different studies used different populations

- ⇒ potential extra-variability
- + different sample sizes ⇒ also impact the estimate and its variability

# Meta-analysis random effects model

Common approach for meta-analysis:

$$y_i \sim \mathcal{N}(\theta_i, \sigma_i^2)$$
$$\theta_i \sim \mathcal{N}(\mu, \tau^2)$$

$$\theta_i \sim \mathcal{N}(\mu, \tau^2)$$

# Meta-analysis random effects model

Common approach for meta-analysis:

$$y_i \sim \mathcal{N}(\theta_i, \sigma_i^2)$$
  
 $\theta_i \sim \mathcal{N}(\mu, \tau^2)$ 

$$\theta_i \sim \mathcal{N}(\mu, \tau^2)$$

Hierarchical generalization of the fixed effect model:

$$y_i \sim \mathcal{N}(\mu, \sigma_i^2)$$

# Meta-analysis random effects model

Common approach for meta-analysis:

$$y_i \sim \mathcal{N}(\theta_i, \sigma_i^2)$$

$$\theta_i \sim \mathcal{N}(\mu, \tau^2)$$

 $\Rightarrow$  between study variability:  $y_i \sim \mathcal{N}(\mu, \sigma_i^2 + \tau)$ 

Hierarchical generalization of the fixed effect model:

$$y_i \sim \mathcal{N}(\mu, \sigma_i^2)$$

⇒ assume same average effect for each study

# Bayesian meta-analysis in practice

Meta-analysis: a perfect usecase for Bayesian analysis?

# Bayesian meta-analysis in practice

### Meta-analysis: a perfect usecase for Bayesian analysis?

- few observations
- informative prior
- sequential

#### Scientific literature search

 $\underline{\wedge}$  FIRST (!) exhaustive search of the scientific literature

### Scientific literature search

### Scientific literature search

### **Evidence synthesis**

Meta-analysis ∈ evidence synthesis

e.g. meta-regression, mechanistic modeling, ...

### Scientific literature search

### Evidence synthesis

Meta-analysis ∈ evidence synthesis

e.g. meta-regression, mechanistic modeling, ...

Still active research domains:

- random effects model will down-weight studies with larger sample sizes
  - Serghiou & Goodman, JAMA, 2018

#### Scientific literature search

### Evidence synthesis

Meta-analysis ∈ evidence synthesis

e.g. meta-regression, mechanistic modeling, ...

Still active research domains:

- random effects model will down-weight studies with larger sample sizes
  - Serghiou & Goodman, JAMA, 2018
  - a bug or a feature ?

### Your turn!



Practical: exercise 6

CRM dose-escalation

### Continuous Reassessment method

CRM [O'Quigley at al., 1990]

Objective: identify the optimal dose

(i.e. Minimum Efficient Dose or Maximum Tolerated Dose)

⇒ select iteratively the dose for the next (batch of) recruited patient(s) based accumulating observations from previously included patients

### Continuous Reassessment method

CRM [O'Quigley at al., 1990]

Objective: identify the optimal dose

- (i.e. Minimum Efficient Dose or Maximum Tolerated Dose)
- ⇒ select iteratively the dose for the next (batch of) recruited patient(s) based accumulating observations from previously included patients
  - etreat each patient ethically (dose best supported by the current evidence)
  - e prior knowledge
  - e sequential Bayesian: online update of the posterior

increasingly used (but still minority...)

### Your turn!



Practical: exercise 7