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Course objectives

[. Familiarize oneself with the Bayesian framework:

1. understand and assess a Bayesian modelling strategy, and discuss its underlying assump-
tions

2. rigorously describe expert knowledge by a quantitative prior distribution

I1. Study and perform Bayesian analyses in biomedical applications:

1. understand, discuss and reproduce a Bayesian (re-)estimation of a Relative Risk

2. understand and perform a Bayesian meta-analysis using “R

3. understand and explain an adaptive design for Phase I/II trials and the associated
decision-rule

Disclaimer

This lecture notes include mathematical and technical details for the sake of completeness that are
not necessary for this course.

Nonetheless, these notes are by no means exhaustive, and the curious reader will be referred
to more comprehensive textbooks such as The Bayesian Choice by C Robert.



Chapter 1

Introduction to Bayesian statistics

Vocabulary

A few words frequently used in the Bayesian paradigm:

paradigm

Refers to a coherent system of representation of the world, a way of seeing things.

a priori

In Bayesian statistics, the Latin expression a prior: is widely used. It means previously in English,
or more precisely based on data prior to the experiment. Etymologically this expession comes from
“a priori ratione” which means in Latin by a preceding reason, and opposes a prosteriori.

a posteriori

The Latin expression a posteriori is also widely used in the Bayesian framework. It means after the
fact in English, or more precisely by relying on experience, on facts. Etymologically this expession
comes from “a posteriori ratione” which means in Latin by a reason that comes after, and opposes
a priori.

elicitation

Action formalizing an expert’s knowledge to enable it to be shared, e.g. to incorporate it into a
model.



Statistics is a mathematical science, whose objective is to describe what has happened and to
assess what may happen in the future. It relies on the observation of natural phenomena in order
to propose an interpretation, often through probabilistic models.

1.1 Reminder on frequentist statistics

Frequentist statistics refers to the theory of statistics developed largely by Neyman & Pearson,
and based on a deterministic view of the parameters of probabilistic models, which are the very
objects that statistical inference seeks to estimate. Maximum likelihood estimation is one of the
fundamental tools of frequentist statistics, as is the statistical test theory with its associated
confidence interval concept.

1.2 The Bayesian paradigm

1.2.1 Bayes’ theorem

The word “Bayesian” comes from the name of Reverend Thomas Bayes. In 1763, the latter
publishes an articleEI in which he exposes the following theorem:
P(EJA)P(A) _ P(EJA)P(A)

PAIE) = P(E|AP(A) + P(E[A)P(A)  P(E)

Posterity refers to this theorem as Bayes’s theorem, even though the latter actually presents a
continuous version in his work:
fylz)g(x)

9v) = Frtyl)gle) de

where X and Y are two random variables whose realisations are denoted x and y respectively, f(y|x)
represents the conditional distribution of Y knowing the realization of X, and g(x) is the marginal
distribution of X. The French mathematician Laplace also found these results independently.
Laplace and Bayes both further described the uncertainty about the parameters 6 of a parametric
model f(y|f) through a probability distribution 7. Bayes’ theorem is then written:

C fwlom0)
POY) = Ty 6)m(6) a0

The fundamental difference between the frequentist approach and the Bayesian approach is
thus that the latter does not consider the parameters as fixed (i.e. for which there is one true
value), but rather as random variables. It is a profound philosophical difference, even if there are
many bridges between the two approaches.

This way of considering parameters as random variables induces a marginal probability distri-
bution 7(6) on the parameters. This distribution is called the prior or the distribution a priori. Its
specification is both an asset of Bayesian analysis — since it allows the hypotheses on the subject
under study to be formalized and taken into account in the modeling — but also a weakness — since
it necessarily introduces subjectivity into the analysis. These two sides of the same coin will be
put forward in turn by the Bayesians and their detractors.

1. T. Bayes, 1763. An essay towards solving a problem in the doctrine of chances, The Philosophical Transactions
of the Royal Society, 53: 370-418. (posthumous)



1.2.2 Bayesian vs. Frequentists: an outdated debate

The ideas of the Reverend Bayes, found independently and then further explored by Laplace, had
a profound influence on the development of statistics during the second half of the 18" century
and the 19" century. But with the advent of modern statistics at the turn of the 20" century
with Galton and Pearson, then with Fisher and Neymann in particular, frequentist theory became
dominant. It was only towards the end of the 20" century that Bayesian statistics came back on
the scene, notably thanks to the rise of the computer and the development of efficient numerical
methods which made it possible to overcome certain limitations previously present in Bayesian
analysis.

Under the influence of Fisher in particular, who firmly rejected Bayesian reasoning, the 20
century saw the statistical community split in two between supporters of the Bayesian approach
and supporters of the frequentist approach (considering the parameters as fixed), with sometimes
virulent debates opposing the two communities.

Today, these quarrels are outdated, thanks in part to the practical successes of both approaches
on modern and complex problems. In addition, a number of methods, such as empirical Bayes
methods, lie at the boundary between the two approaches and bridge the gap between them.
Today’s (bio)statistician must therefore be pragmatic and versatile, integrating Bayesian analysis
into his/her toolbox to solve the problems he/she faces.

“Etre ou ne pas étre bayésien, la n’est plus la question: il s’agit d’utiliser & bon escient les outils
adaptés quand cela est necessaire — To be, or not to be, Bayesian, that is no longer the question:
it is a matter of wisely using the right tools when necessary.” Gilbert Saporta



Chapter 2

Bayesian modeling

2.1 Refresher on frequentist modeling

Let us consider a series of iid (independent and identically distributed) random variables Y =
(Y1,...,Y,), of which we observe a sample y = (y1,...,yn). A frequentist model for their proba-
bility distribution is the following probability density family: f(y|f), 8 € ©. This model assumes
there is a “true” distribution of Y characterized by the “true” value of the parameter 6* which
is written f(y|0*). We then want an estimator 5, often one that has good asymptotic properties
(generally unbiased for #* and with as little variance as possible).

2.2 Historical motivating example

Laplace looked into the probability of birth of girls (rather than boys). To do so, he used the
births observed in Paris between 1745 and 1770, during which 241,945 girls and 251,527 boys were
born. The question is then: “When a child is born, is it equally likely to be a girl or a boy?”

2.3 Construction of a Bayesian model

The first step in building a model is always to identify the question you want to answer. Once this
step is completed, it is a matter of determining what kind of observations are available and will
be able to inform our response to the question of interest.

2.3.1 The sampling model

Let us denote the observations avalable y. Like a frequentist model, a parametric Bayesian model
consists of first proposing a probabilistic model underlying the generation of these observations:
Y; % f(y|6). The latter is called the “sampling model”

In the historical example, Laplace proposed a sampling model based on Bernoulli’s law. Let
be Y; the random variable whose value is 1 if the new born ¢ is a girl, and 0 if it is a boy:
Y; ~ Bernoulli(#), where 6 € [0, 1].



2.3.2 Prior distribution

In Bayesian modeling, compared to frequentist modeling, we add a probability distribution (defined
on the parmaeters space ©), called prior distribution:

0~ 7(6)
Y10 % f(y10)
0 will thus be treated like a random variable, but which is never observed !

In the historical application, Laplace first considered a uniform prior on the probability 6 that
a newborn would be a girl rather than a boy: 6 ~ U 1

2.3.3 Posterior distribution

The purpose of such a Bayesian modeling is to infer the posterior distribution of the parameters,
i.e. the law of # conditionally on the observations: p(#]Y"), which is called distribution a posteriori
or posterior distribution. It is calculated from the sampling model f(y|f) — from which we obtain
the likelihood f(y|#) for all observations — and the prior m(#) thanks to Bayes’ theorem:

f(yl0)7(0)
f(y)

where f(y) = /f(y]@)w(@) dé is the marginal law of Y.

p(Oly) =

Example with a uniform prior

In the historical example, the likelihood is thus:

f(ylo) = f[ gvi(1 — )14 — §5(1 — g)"—S

where S = Zyl We then get the following posterior:
i=1

05(1—0)"%
plly) = —L
Cly) f(y)
It can be shown that f(y) = [y 05(1 — 0)"5df = m thanks to a series of integration
5 n

n!

Sl(n—S)!"
(g) (n+ 1)0%(1 — 0)"=%. To answer the question of interest, we can then calculate:

by parts, where (g) = The distribution a posteriori is finally the following: p(fly) =

1 1
P(0 > 0.5ly) = / p(fly) = (") (n+ 1)/ 05(1 —0)"5do
0.5 S 0.5
Unfortunately, this integral (said to be “incomplete”) has no analytical solution. An approximation
by a normal distribution however allowed Laplace to conclude that the probability of birth of a
girl is lower than that of a boy[[ since he obtained: P(6 > 0.5y) ~ 1.15 10~*2

1. This conclusion has since been confirmed and seems to be valid for the human species in general.

9



Example of the Beta distribution conjugacy

Let us now use a different prior distribution, for instance the Beta(a, #) distribution whose density

is written: f(0) = %9%1(1 — )Pt (for @ > 0 and 8 > 0).

EN

Parameters

D a=p=0.1
|:| a=p=05

a=p=1

Ll

D a=p=2

E] a=p=4
7 , a=33=0.8

0.00 025 0.50 0.75 1.00
0

Examples of various parametrizations for the Beta distrib

w

N

[N

Probability density of Beta distribution

We notice that the uniform distribution is a special case of the Beta ditribution when « and /3 are
both equal to 1. If one recalculate the posterior distribution with the prior @ = Beta(«, 3), one

easily gets:
P(9|Y) X 0a+s_1(1 — 9)5+(n—S)_1

We recognize, up to a normalization constant, the form of a Beta distribution, whose parameter
pair would be (a+ S, 5+ (n—.S)). Thus, we deduce from this that 8]y ~ Beta(a+.S, 8+ (n—295)).
This is called a conjugated distribution because the posterior and the prior belong to the same
parametric family.

We can now evaluate the impact of this Beta prior on our result based on the choice of
hyperparameters o and 5. We notice that the prior doesn’t seem to affect our result here. That

Interpretation of the prior Parameters of the Beta distribution P(6 > 0.5]y)

Hboys > Hgirls a=01,3=3 1.08 10~ %
Hboys < #girls a=3 p=01 1.19 1072
#boys = #girls a=4, =4 1.15 107*2
Hboys # Hgirls a=0.13=0.1 1.15 107*2
non-informative a=1, =1 1.15 1072

Table 2.1 — For 493,472 newborns including 241,945 girls

is because we have a lot of observations at hand. The impact of the prior on the posterior then
becomes very small compared to the amount of information provided by the observations. If we
imagine that we had observed only 20 births, including 9 girls, then we notice a much greater
influence of the prior.

10



Interpretation of the prior Parameters of the Beta distribution P(6 > 0.5|y)

#boys > #girls a=01,=3 0.39
#boys < #girls a=3, =01 0.52
#boys = #girls a=4, =4 0.46
#boys # #girls a=0.1,6=0.1 0.45
non-informative a=1 =1 0.45

Table 2.2 — For 20 newborns including 9 girls

N

a=0.1,p=0.1 a=0.1,p=3 a=1,p=1 a=3,p=0.1 a=4,p=4
> = = e e e
5° : : :
g : : 5 5 5 Distribution
'?4 ! y ! . prior
3 i [ ] posterior
i M PE>05)
<
o

o

0 02505075 10 02505075 10 02505075 10 02505075 10 02505 075 1
0

Impact of different Beta priors for 20 observed births

2.3.4 The thorny question of the prior choice

An essential feature of the Bayesian approach is thus to have a distribution on the parameters.
In Bayesian inference, we start from a distribution a priori, and the information contained in
the observations is used to obtain the distribution a posteriori. The a priori distribution brings
flexibility compared to a frequentist model, by allowing external knowledge to be incorporated
into the model. For example, this may solve identifiability problems sometimes encountered by a
purely frequentist approach when the information provided by the observations is not sufficient to
estimate all the parameters of interest.

This is a great advantage of the Bayesian approach. But on the other hand, the choice of this
distribution on the parameters introduces an intrinsic subjectivity into the analysis, which can be
critisized. For example, a statistician working for a pharmaceutical company could choose a prior
distribution giving a high probability that a drug is effective, which will necessarily influence the
result. The choice (or elicitation) of this prior distribution is therefore sensitive.

First of all, let us make two theoretical remarks:

1 the support of the posterior must be included in the support of the prior. In other words,
if 7(6) = 0, then p(fly) = 0.

2 in general we assume the independence of the different parameters a priori (when there is
more than one parameter — which is almost always the case in applications), which allows
to elicit the priors parameter by parameter.

Prior Elicitation

There exist strategies to communicate with non-statistical experts to transform their prior knowl-
edge into prior distribution.

11



The simplest method is to ask the experts to give weights (or probabilities) to ranges of values:
this is the “histogram method”. However, when the parameter can take values in an unbounded
scale, this method might give a zero prior for parameter values that are nevertheless possible. ..

Another approach is to give ourselves a parametric family of distributions p(#|n) and to choose n
so that the prior distribution is in agreement with what the experts think for specific characteristics
of the problem (for example, the mean and variance, or simple quantiles such as quartiles, could
coincide with their views). This solves the support problem raised by the histogram method.
However, the choice of the parametric family can be important. For example, a normal N (0,2.19)
distribution has the same quartiles as a Cauchy C(0, 1) distribution (namely —1, 0, 1). But these
two priors can give quite different distributions a posteriori. One strategy for determining quartiles
is to ask the following questions for instance:

— for the median: Can you determine a value such that theta is as likely to be above or to be

below ?

— then for the first quartile: Suppose you are told that 0 is below [a given median value], can

you then determine a new value such that 0 is as likely to be above or to be below?

— similarly the third quartile is determined. ..

SoftvvareEI exists to help elicit prior distribution by experts: see for example the academic tool
SHELF[]

One can also elicit priors from the literature. The idea is to define the moments of the prior
such that they give a reasonable probability to the parameter values that have been identified in
the literature. If we propose a normal distribution A(x,0*), we can for example choose p and o
so that the smallest value given in the literature is equal to u — 1.960 and the largest to p+ 1.960
(a trained eye will have recognised the 2.5% and 97.5% quantiles of the normal distribution). A
more elaborate approach is to maximize the likelihood of literature values. . .

The quest for non-informative priors

For some parameters (or even all parameters) it’s common that one have no prior knowledge
whatsoever. One can then try to define a “non-informative” prior distribution. For example if the
parameter is the probability that a coin will fall on heads or tails, a non-informative ditribution
could (at first glance) be the uniform distribution on [0,1] (Bayes’ historical choice in 1763).
However, two major difficulties emerge:

1 Improper distributions

The first challenge is that this can lead to consider improper ditributions. An improper
distibution is characterized by a density which does not sum to one. For example, for a
mean parameter of a normal distribution, it may seem natural to define a constant prior

with density 7(6) = ¢ (i.e. all possible values on | — 0o, +00[ have the same probability).
Of course / cdf = oo, and such a choice does not define a probability distribution ! It is
however acceptable because the posterior is (most of the time) proper. Indeed:
f(ylO)c
p(0ly) = A
J F(y|@)cdo

2. http://www.tonyohagan.co.uk/shelf/

12
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If /f(y|6’)c df = K (as it is often the case), then p(d]y) = £49 is a proper density (i.e.

which sums to 1).

2 Non-invariant distributions

The second challenge comes from the non-invariance of the uniform distribution for non-
linear transformations of parameters. Indeed if we make a transformation of the parameters
v = ¢(0), the density of v is written: w(y) = |J|n(f), where |J] is the Jacobian of the
transformation (i.e. the determinant of the Jacobian matrix J = ag;i;m). For example
if we take a uniform density equal to 1 for 6 on (0,+00) and we do the transformation
v = log(6), we have g~ '(y) = € and |J| = e?amma. So we have pi(y) = €7, which is not
the characterization of a uniform distribution. Hence the following paradox: if the uniform
distribution for 6 reflects a total absence of a priori knowledge on 6, we should also have a
total absence of a priori knowledge on v, which should translate into a uniform distribution
on 7. But that cannot be true. Thus the uniform distribution cannot generally be the
distribution representing an absence of prior knowledge. This is a central argument which
led Fisher, in 1922, to propose the maximum likelihood estimator, possessing an invariance
property for non-linear transformations of parameters.

NB: This does not mean that one cannot take a uniform distribution as their prior, but one
must keep in mind that the uniform ditribution only applies to a specific parameterization. . .

To tackle these challenges, various solutions have been proposed. They have shown that there is
no such thing as a completely non-informative prior distributions, but some can be considered as
weakly informative.

Jeffreys’ priors

Perhaps the most successful approach to weakly informative priors is that of Jeffreys. The latter
proposed a procedure to find a prior distribution with an invariance property with respect to
parameterization. In the univariate case, Jeffreys’ prior is defined by:

7(0) o \/1(0)

92 log(f (y]0))
962

therefore invariant for bijective transformations of the parameters. That is, if we consider another
parameterization gamma = g(6) (for which there is reciprocal bijection g~'), we always get:

where I is Fisher’s information matrix (as a reminder, () = —Ey { }) Jeffreys’ prior is

m(7) oc\/1(7)

while 7(+y) still corresponds to the same prior on 6.

In the multidimensional case (the most common) Jeffreys’ prior is defined as:

where |I(0)] is the déterminant of Fisher’s information matrix I(6). However this method is rarely
used in practice because on the one hand calculations can be hard, and on the other hand it
can give somewhat curious results. Indeed, in the case of a normal likelihood where we have

13



2 parameters 0 and o for example, Jeffreys’ multidimensional prior is 1/¢%, which is different
from pi(c) = 1/0 obtained in the unidimensional case... In practice the tendency is generally to
apply Jeffreys’ prior separately for each parameter, and to define the joint distribution a priori
by multiplying the priors for each parameter (thus making an independence hypothesis a priori).
For the normal example with two parameters, we get 7(6,0) = 1/0. But we notice it’s not really
Jeffreys’ two-dimensional prior anymore. . .

Diffuse priors

In practice, a very common alternative for giving a weakly informative prior is the use of
parametric distribution (such as the normal distribution) with very large variance parameters
(which approaches the uniform law while avoiding the problem of improper distributions).

2.4 Going further

2.4.1 Hyper-priors & hierarchical models

In classical Bayesian modeling, we consider two hierarchical levels: first w(0), then f(yld). It
is possible to add a level by also putting a prior onto the n parameter of 7(6), called a hyper-
parameter: 7(6|n). Applying the Bayesian approach, we can give this hyper-parameter a prior
distribution, then called hyper-prior and denoted h(n). The distribution is:

fylO)w(0) _ [ f(yloO)m(0n)h(n)dn _ f(yl0) | =(0]n)h(n)dn
f(y) f(y) f(y)

We notice that this hierarchical modeling with three hierarchical levels is equivalent to a Bayesian
modeling with two levels and a prior distribution which becomes: m(0) = [m(0|n)h(n)dn. Nev-
ertheless, this hierarchical construction can facilitate the modeling stage as well as the elicitation
of the prior. It is even possible to build models with more than three levels, considering that
the distribution of 1 depends itself on “hyper-hyper-parameters”, and so on... A typical use case
for hierarchical Bayesian modeling is the inclusion of random effects in the linear model. Latent
class models are another example. We remark here that the boundary between frequentist and
Bayesian modeling is becoming thinner, and that it is mainly a matter of interpretation of the
model parameters (and therefore of the results).

p(Oly) =

If we go back once more to the historical example of birth sex with a Beta prior, one can
propose two Gamma hyper-priors for o and f:

a ~ Gamma(4,0.5)
B ~ Gamma(4,0.5)
0'@, B~ Beta(a7 B)

)

Y6 % Bernoulli(d

2.4.2 Empirical Bayes

The empirical Bayes strategy consists of eliciting the prior according to its empirical marginal
distribution, and therefore to estimate the prior from the data. This means giving ourselves hyper-
parameters and trying to estimate them through frequentist methods (for example by maximum

14



likelihood) by 1), before plugging this estimate into the prior distribution and thus obtaining
the posterior distribution p(f|y,7). This empirical Bayes approach that combines Bayesian and
frequentist may seem to go against the idea of an a priori, since the data are already used to
define the prior. Nevertheless, one can see the empirical Bayes strategy as an approximation
of the completely Bayesian approach. Compared to a weakly informative prior it gives a more
concentrated posterior (decreased variance), at the cost of introducing a bias in the estimate (we
use the data twice !). This approach illustrates once again the trade-off between bias and variance
that is typical in any estimation procedure.

2.4.3 Sequential Bayes

Note that Bayes’ theorem can be used sequentially. Omitting the denominator (which does
not depend on #) one can write: p(fly) < f(yl@)m(0). If y = (y;,y,), one gets: p(Oly)
f(ys|0) f(y,10)m(0) o< f(ys|@)p(0ly,). The posterior knowing y, becomes the prior for the new
observation y,. So we can update the information on 6 as the observations arrive.

2.5 Bayesian Inference

Once Bayesian modeling is complete, the posterior distribution (obtained by choosing the prior
distribution, the sampling model and the observed data) is available. This distribution contains all
the information on # conditionally on the model and the data. One can nevertheless be interested
in summaries of this distribution, for example in a central parameter of this distribution such as its
expectation, its mode or its median. .. Those are akin to point estimators obtained by frequentist
analysis.

2.5.1 Decision theory

Statistical decision theory is generally used when estimating an unknown parameter 6. The decision
then deals with the choice of a point estimator 6. In order to determine the optimal 9 a cost
function is defined (with a value in [0, +00[] representing the penalty associated with the choice
of a particular 6 (that is, the associated decision). In order to determine the optimal widehatf (i.e.
the optimal decision) one will want to minimize the chosen cost function. Note that a large number
of different cost functions are possible, and that each of them results in a different optimal point
estimator, and therefore a specific optimal decision. This adds an additional layer of subjectivity
to an analysis, and it is good practive to perform a sensitivity analysis to quantify the impact of
the cost function choice on the result of an analysis.

2.5.2 Point estimate

We now present several point estimators widely used in Bayesain inference.

Posterior mean

The posterior mean is defined as:

pp = E(0]y) = Koy (0)

15



It is the estimator with the samllest posterior variance (in the Bayesian meaning: E9|y(9—§)2). It is
therefore the optimal point estimator in the sense of the quadratic error (quadratic loss function).
Note that the calculation of the expectation is not always easy because it assumes the calculation
of an integral. ..

Maximum A Posteriori

The maximum has been used a lot, especially since it is easier (or at least less difficult) to com-
pute. Indeed, it does not require any integral calculation, but just a simple maximization of
f(y|0)m(0) (because the denominator f(y) does not depend on #). This mode estimator is called
the maximum a posteriori (often denoted MAP).

Posterior median

The median is also a possible summary of the posterior distribution. As its name suggests, this
is the median of p(A|(y)). This is the optimal point estimator in the sense of the absolute error
(linear loss function).

2.5.3 Credibility interval

Finally we can define a set of values with a high posterior probability of occurrence. Such a set
is called a credibility set. If the posterior distribution is unimodal, such a set is an interval.
For example, a 95% credibility interval is an interval [t;,; ts,,] such that fttrffp p(fly) dd = 0.95.
We're usually interested in the shortest possible 95% credibility interval (also called Highest Density

Interval).

Let us recall here the interpretation of a frequentist confidence interval at a 95% level, which is
interpreted as follows, with respect to all the intervals of this level that could have been observed:

95% of the intervals computed on all possible samples (all those that can be observed)
contain the true value 0

/\ one cannot interpret a realization of a confidence interval in probabilistic terms ! It is a common
mistake. . . The credibility interval is interpreted much more naturally, as an interval that has a
95% chance of containing 6 (for a 95% level, obviously)

2.5.4 Bayes Factor
The Bayes Factor is the marginal likelihood ratio between two hypotheses (e.g. H; and H):

By, — f(y|Hy)

f(y|Hy)

It is interpreted in terms of favored support for either hypothesis from the observed data y.

The posterior odds between those two hypotheses can then be computed as:

p(H1|y) — BFy X p(H1)

p(Holy) p(Ho)
If p(Hy) = p(Hy), then the posterior odds are equal to the Bayes Factor.
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2.5.5 Asymptotic — and frequentist— properties of the posterior dis-
tribution

Doob’s convergence theorem

A very interesting result is the asymptotic behavior of the posterior distribution under certain
hypotheses (iid observations, densities three times differentiable, existence of moments of order 2).
There is a first result, Doob’s convergence theorem, which ensures that the distribution concentrate
around the true value of the parameter when n — co. We can note it (convergence in distribution):

p(Oly,.) = b

0 birth 1 birth including 1 girl 2 births including 2 girls 5 births including 4 girls
8 ] — H
1 E :
6 { y { :
1 ] 1 1
. 1 : 1 1
4 : ‘ i ‘ T
> : : : : oY Point estimator
= N 1 1 3 .
a2 ° | i | ! : MAP
% 0 . ! . ! C ! MLE
> ' ' ! | 6* = 0.49
= 10 births including 6 girls 20 births including 10 girls 40 births including 20 girls 100 births including 49 girls
Q ] . . .
E 8 Distribution
(@] .
=6 : prior
o : [ ] posterior
4 :
2 / ] /
0 3

0 025 05 075 1 0 025 05 075 1 0 025 05 075 1 0O 025 05 075 1

Historical example: posterior concentration aro@hevith n

Bernstein-von Mises Theorem

A richer result characterizes the asymptotic distribution of #: the Bernstein-von Mises theorem
(also called Bayesian central-limit theorem). For a large n the posterior distribution p(6|y)
can be approximated by a normal distribution centered at the mode 0 and for variance the inverse
of the Hessian (i.e. the second derivative) of p(f|y) with respect to € taken at the mode ¢. One
can then write the following approximation:

p(Bly) = N(9,1(6)7")

This results is important for two reasons:

— it can be used to explain why Bayesian methods and frequentist procedures based on max-
imum likelihood give, for large enough n, very close results. Thus, in dimension 1, the

asymptotic credibility interval is [6y/1(8)~1], and compared to the frequentist confidence

interval constructed from the estimator’s asymptotic ditribution: [éM g E£1.964/1 (é vLE) Y
(where I(0ypE) is here the observed Fisher information matrix, and corresponds to the
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previous definition for uniform priors). We note that they are both identical (for a uniform
prior). For these priors, we note that we also have 0 = Oy (and even if we don’t take
uniform priors, the estimators and intervals are very close, since the weight of the prior be-
comes negligible when n — o0). The theoretical interpretation of these intervals obviously
remains different.

— it means that we can approximate the posterior distribution by a normal distribution, whose
mean and variance we can calculate simply using the MAP, and thus facilitate numerical
calculations of Bayesian inference.

2.6 Conclusion and perspective on Bayesian modeling

2.6.1 Essential concepts

1 Bayesian modeling;:

0~ m(f) the prior
Yi|6 w f(y|@) sampling model

2 Bayes’ formula:
f(yl0)m(6)

f(y)
where p(6|y) is the posterior distribution, f(y|@) is the likelihood (inherited from the sam-
pling model), 7(0) is the prior distribution on the parameters 6 and f(y) = [ f(y|0)7(6)
is the marginal distribution of the data, i.e. the normalizing constant (with respect to 6).

p(Oly) =

3 The posterior distribution is given by:

p(Oly) oc f(ylO)m(0)

4 Weekly informative priors

5 Posterior mean, MAP, and credibility intervals

2.6.2 Usefulness of the Bayesian approach as an analytical tool

The Bayesian framework is a statistical tool for data analysis, on the same footing as other method-
ologies such as random forests, dimension reduction methods, latent class models, etc. It is partic-
ularly useful when few observations only are available and frequentist methods do not yield any or
satisfactory results (e.g., logistic regression with very little or no event, i.e.a lot or even only 0 in
the case of extremely rare events) and/or when there is important knowledge a priori that can be
integrated into a model with few observations (for example the model used by Five ThirtyFEight to
predict the results of the 2008 American elections in each American state, in some of which only
few polls were conducted, or in genomic studies where the number of observations available for each
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gene is generally relatively small while many genes are observed). In a few instances, the Bayesian
framework allow the definition of models with feature that currently cannot be replicated in the
frequentist framework ,e.g. in Bayesian nonparametrics. Like any statistical method, Bayesian
analysis has advantages and disadvantages that will be more or less important depending on the
application considered.
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Chapter 3

Numerical computation for Bayesian
analysis

3.1 Estimating the posterior distribution is often costly

3.1.1 Multidimensional parameters

In real-world data analysis, there are often several parameters. The vector of parameters is thus
0 = (0,...,0;). Bayes’ formula yielding the posterior distribution from both the prior and the
likelihood is still valid: it gives the joint posterior ditribuion of all the parameters. All the infor-
mation is encoded in this joint distribution. Unfortunately, its numerical calculation is not always
easy — especially for complex models (and in some models, even the likelihood is difficult to com-
pute). In addition, to obtain the joint posterior, it is also necessary to compute the normalizing

d
constant f(y) = / f(0)7(0)dO. An analytical solution is only available in very special cases
Q)

(especially when using conjugate distributions); and in the majority of practical cases, this nor-
malizing integral must in fact be calculated numerically. If 6 is d-dimension, this means calculating
an integral of complexity d, which is difficult when d is large (serious numerical problems appear
as soon as d > 4).

An even more challenging issue arises when drawing conclusions from this joint distribution. In
general we are interested in the possible values for each parameter. This means that we need the
marginal, unidimensional distribution of each parameter. For a given parameter, to obtain it, it is
then necessary to integrate out the d — 1 other parameters from the joint distribution (and this d
times, for each of the d parameters). The problem is all the more difficult because it is necessary
to calculate these integrals for each possible value of the parameter, in order to reconstitute the
full posterior probability density. In complex problems, a sufficiently precise calculation of these
integrals seems unfeasible, and algorithms based on sampling simulations are generally used, in
particular the so-called Markov chain Monte Carlo (MCMC) algorithms.

3.1.2 Computational Bayesian statistics

Finding the posterior appears simple in theory thanks to Bayes’ theorem. But in practice the
calculation of the normalizing integral to the denominator is often extremely difficult. Finding an
analytical expression is only possible in a few very special cases, and numerical evaluation can be
just as difficult, especially when the dimension of the parameter space increases.
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Computational Bayesian statistics is looking for solutions to be able to estimate the distri-
bution a posteriori, even when only the numerator in Bayes’ theorem is known (non-normalized
posterior). The main methods used are based on sampling algorithms to generate a sample dis-
tributed according to the posterior distribution. Among these algorithms, two main categories can
be distinguished: (i) first, direct sampling methods, where a sample is generated from a simple
(e. g. uniform) distribution and then transformed so that the result is distributed according to
the posterior; (ii) Monte-Carlo Markov chain methods (MCMC), where a Markov chain is con-
structed on the space of parameters whose invariant probability distribution matches the posterior
distribution.

3.1.3 Monte Carlo method

Monte Carlo (1955) was the encrypted name of a project by John von Neumann and Stanislas
Ulam at the Los Alamos Scientific Laboratory to use random numbers to estimate quantities that
are difficult (or impossible) to calculate analytically.

Using the law of large numbers, the aim is to construct a Monte Carlo sample to calculate
various functions using the probability distribution followed by this very sample. Indeed E[f(X)] =

1
/ f(z)p(x)dx. However, thanks to the law of large numbers, we have: E[f(X)] = Nf(m) provided

that the 2 forms a iid sample according to p, the probability distribution of X. We can thus
calculate a certain number of integrals, provided we are able to sample according to p(z).

Ezrample: Estimating m = 3.14 ... with random numbers

o
44 -1
CrmITreIMTIT O aTrreny
(I ITCITIC00d T{qﬁ'l TaiITreae
[
[ar]
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Casino roulette (in Monte Carlo ?) A target with a 36 x 36 superimposed grid

1. The probabilty to be inside the disk is the ratio between the disk and the square surfaces:
B TR? om
Pe=RR ~ 4

2. Let us sample n points ((x11,221), ..., (T1n, T2n)) = (P1,..., P,) in the 36 x 36 coordinate

system defined by the grid, thanks to the roulette which will générate the coordinate one

by one.

3. Put those sampled onto the grid and count how many lands inside the disk.
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4. Compute the ratio (i.e. the estimated probability of being inside the disk) :

2 P €cercle

bc
n

If n = 1000 and we find 786 points are in the circle, then we have 7 = 4 x % = 3.144. We

could further improve our estimate by increasing the resolution of our grid, and also by increasing
our number n of sampled points. Indeed, we have liril Pc = pc according to the law of large
n—-+0oo

numbers.
We thus built a Monte Carlo sample, from which we can calculate many functions, including

7 which corresponds to 4 times the probability of being in the circle !

Similarly, direct or MCMC sampling methods seek to construct a Monte Carlo sample following
the posterior distribution, in order to calculate a number of functions (posterior averages, credibility
intervals, etc) from it.

3.2 Direct sampling methods

3.2.1 Generation of random numbers according to usual probability
distributions

There are several ways to generate so-called random numbers according to known distributions.

The vast majority of computer programs does not generate completely random numbers. Rather,

we are talking about pseudo-random numbers, which seem random but are actually generated
according to a deterministic process (which depends in particular on a “seed”).

The Uniform distribution

To generate a pseudo-random sample according to the uniform distribution on [0, 1], we can give
the example of the linear congruential algorithm (Lehmer, 1948):

1 Generate a sequence of integers y,, such as:
Yn+1 = (ay, + b) mod. m
yn

m—1

2 x, =

Choose a, b and m so that y, has a very long period and that (xy,...,z,) can
be considered as 7id

where yg is the so-called “seed”. We notice that we necessarily have 0 <y, < m—1. In practice we
take m very large (for example 219937 the default in R which uses the Mersenne-Twister variation
of this algorithm). In this course, we will not focus on the generation of pseudo-random according
to the uniform distribution on [0, 1], this is a tool that we will consider reliable and that is used
by the different algorithms detailed later on.
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Other distributions

To sample according to the binomial distribution Bin(n,p), we can use the relationships be-
tween the different usual distributions, starting from U; ~ U)o 1;:

Y; = 1y, ~ Bernoulli(p)

X =YY, ~ Bin(n,p)

=1

To sample according to the Normal law N(0.1), we can use the Box-Miiller:

If U; and U, are 2 uniform variables ]0; 1] independent, then

Y1 =/—2log Uy cos(2nUs),
Yy = y/—2log Uy sin(27Us)

are independent and each follow the Normal law N(0.1).

3.2.2 Sampling according to a distribution defined analytically
Inverse transform sampling

Definition: Generalized inverse

For a function F' defined on R, its generalized inverse is defined as

F~Y(u) = inf{x; F(z) > u}

Property: Let F be the cumulative distribution function (cdf) corresponding to a given probability
distribution, and let U be a random variable following a uniform distribution on [0, 1]. Then F~*(U)
defines a random variable whose cumulative distribution function is F'.

We deduce from the above property that if we know the distribution function of the law
according to which we want to simulate, and if we are able to reverse it, then we can generate a
sample according to this law from a uniform sample on [0, 1].

FExample: We want to sample according to the exponential distribution of parameter .

We know the density function of the exponential probability distribution, which is f(x) = Aexp(—Az),
as well as the corresponding cumulative distribution function (its integral), which is F(z) =
1 — exp(—Ax).

1
Let’s pose F(x) = u. One notices then that x = Y log(1 —u) = F~'(u).
If u ~ Up 1y, then z ~ Exp(N).
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Acceptance-rejection method

The acceptance-rejection method consists in using an instrumental distribution g, which we know
how to sample from, in order to sample according to the target distribution f. The general principle
is to choose g close to f, to propose samples according to g, and to accept some and reject others
in order to obtain a sample according to the f distribution in the end.

Let f be the density function from a probability distribution of interest.

Let g be the density function from a probability distribution (from which one
knows how to sample) such that, for all z:

flz) < Myg(z)

While ¢ < n:
1 Sample z; ~ g and u; ~ Ujo 1]
2 If u; < fz:) , accept the draw:
Y = ng(%)

else reject it and return to 1.

i1d
Y1y Un) ~ f

0.6
C . . -
2 0.4 Distribution
3]
§ = f (target)
2 == ¢ (instrumental)
7
5 0.2- M*g (boundary)
a

0.0

-5.0 -2.5 0.0 2.5 5.0
X

Example of a proposal and a target ditribution for the accept-reject algorithm

The smaller the M, the lower the rejection rate and the more efficient the algorithm is (in the
sense that it requires less iteration to obtain a sample size of n). It is therefore advisable to choose
g as close as possible to f, especially when the dimension increases (the impact of M being all the
more important then). Nevertheless, the proposal law will necessarily have heavier queues than
the target law, in all dimensions of the parameter space. Because of the scourge of size, when the
number of parameters increases, the acceptance rate decreases very quickly.

FExercise 1: Construct a pseudo sample of size n according to the following discrete law:

P10z, + P20sy + -« . PO, with Zpi =1
i=1
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FEzercise 2: Using the inversion method, generate a sample size according to a Cauchy’s law (whose

1
density is f(z) =

m)7 knOWing that arctan/(l‘) =

(L+a7)

FExercise 3: Write an acceptance-rejection algorithm to simulate the realization of a sample size n
of a normal law N(0.1) using a Cauchy law as a proposal. Find the optimal M value.

3.3 MCMC algorithms

The principle of MCMC algorithms is to build a Markov chain visiting the parameter space, whose
invariant probability law is the posterior distribution.

3.3.1 Markov chains: a primer

A (discrete-time) Markov chain is a discrete-time stochastic process. It can be defined as a sequence
of random variables Xy, X, X3, X3, ... (all defined on the same space) with the Markov property
(“memoryless”):

p(Xi = 35|X0 =20, X1 =71,...,Xj_1 = %—1) = p(Xi = $|Xi—1 = %‘—1)

The set of possible values for X, is called state space and is noted E.

Remark: Continuous-time Markov chains can also be defined, then requiring discrete state space,
but such mathematical objects are beyond the scope of this course.

A Markov chain is defined by 2 parameters:
1 its initial distribution p(Xj)
2 its transition probabilities T'(x, A) = p(X; € A|X;—1 = x)

Remark In the following, we will only consider Markov chains homogeneous, i. e. who checks:

p(XiJrl = »’U’Xz' = y) = P(Xi = $|Xi71 = y)

Property: A Markov chain is said to be irreducible if all sets of non-zero probability can be
reached from any starting point (i.e. any state is accessible from any other).

Property: A Markov chain is said to be recurrent if the trajectories (X;) pass an infinite number
of times in any set of non-zero probability of the state space.

Property: A Markov chain is said to be aperiodic if nothing induces periodic behavior of the
trajectories.

Definition: A probability distribution p is called invariant law (or stationary law) for a
Markov string if it verifies the following property: if X; follows p, then X;,; (and the following
items) are necessarily distributed according to p.

Remark: A Markov chain can admit several stationary laws.
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Ergodic theorem: A positive irreducible and recurrent Markov chain (i.e. the average return
time is finite) admits a single invariant probability distribution p and converges almost certainly
towards it (if it is also aperiodic, then it converges in law towards p).

FExample: Doudou the hamster

Let us assume that Doudou’s state (a hamster) every minute follows a Markov chain with three
possible states: sleep (S), eat (E), or work out (W). Thus, its state in one minute depends only on
its current state, and not what it was doing before. Suppose that the transition probability matrix
is then the following:
Xi/Xi+1 S E W
S 0.9 0.05 0.05
E 0.7 0 03
W 0.8 0 02

P =

1) Is the Markov chain irreducible ? recurrent ? aperiodic ?
0.7

0.9

o

2) Suppose that Doudou is now asleep. What will it be doing in 2 minutes ? in 10 minutes 7

1\ 0.885\ © 0.884\ "
zo= 10 Ty = zoP? = | 0.045 T10 = 2o P = 2, P = | 0.044
0 0.070 0.072

3) Suppose now that Doudou is working out. What is he going to be doing in 10 minutes 7
0\ " 0.884) "

Ty = 0 10 = .I()Pw = 10.044

1 0.072

Here, since the chain is aperiodic, recurrent and irreducible, therefore there is a stationary distri-
bution: p = pP.

3.3.2 MCMC sampling
MCMC algorithms: general principle

The general principle of MCMC algorithms is as follows: to produce an acceptable approximation
of an integral — or other functional — of a distribution of interest (such as the posterior), one only
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needs to sample a Markov chain whose limit distribution is this very distribution of interest (i.e.
the posterior), and then to apply the Monte Carlo method to it.

A twofold convergence is thus required:

1 the Markov chain must first converge to its stationary distribution: V.Xy, X, % D
n—-—+0oo

2 once this stationary distribution is reached, the Monte Carlo convergence must also happen:

3 2 () S ELACY)

Markov chain convergence Monte-Carlo sample

Xo—= X1 Xo—=- =X, =2 X411 = Xppo = = Xpun

MCMC algorithms uses an acceptance-rejection framework:

1 Initialise 2®
2Fort=1...n+N:
1. Propose a new candidate y® ~ ¢(y®]z*1)

2. Accept y*) with probability a(x(t_l),y(t)) :
2 = y®

if t > n, “save” ® (as part of the final Monte Carlo sample)

where ¢ is the instrumental distribution for proposing new samples and « is
the acceptance probability.

General organisation of MCMC algorithms

For the instrument proposal distribution ¢, there is not universal optimal choice, but an infinity
of possible distributions (some better tan others). In order to ensure convergence towards the
targeted distribution p: (i) the support of ¢ must cover all of the support values of p, (ii) ¢ must
not generate periodic values. Ideally, ¢ is chosen so that its calculation is simple and fast (for
example, you can choose ¢ to be symmetric).

Metropolis-Hastings algorithm

The Metropolis-Hastings is the workhorse of MCMC algorithms: it is a very simple and general
algorithm for sampling according to uni- or multi-dimensional distributions.
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1 Initialise z(¥)
2 Fort=1...n+ N :
1. Sample y® ~ ¢(y®]z1)
2. Compute the acceptance probability
~ S0 (t—1)
x
o' = min {1, (g(y()tl) / pEtl) ()t) }
q(yWzt=1)/ q(zt=D]y®)
3. Acceptance-rejection step:
Sample a value u® ~ Ujo 1

o _ {y@) if u® < q®

21 else

V) gDy O
BEED) gy@ D) boIt

can thus be computed knowing p only up to a constant (since it simplifies in the above ratio).
Note that his is particularly useful when the target p is actually the posterior ditribution of some
Bayesian model.

There are particular cases where the computation of o can be simplified, such as:

One can reformulate the acceptance probability a'¥ as: a® = min {1,

e Independant Metropolis-Hastings: ¢(y®|z*Y) = ¢(y®)
e Random walk Metropolis-Hastings: ¢(y"|z(!™Y) = g(y® — z(t=V)
If ¢ is symetric (g(—z) = g(z)), the computation of the acceptance probability o!® then

5(y® )] p(t=1) 5(0() ®) ~ (1)
simplifies: py?) aly”lx ): py™) _ YY)

plat=0) q(at=D]y®) — plalt=D) gaH=7)  p(zt-)

The Metropolis-Hastings algorithm is a very simple and general algorithm for one-dimensional
or multi-dimensional sampling. The choice of the instrumental distribution is crucial — but difficult
— and has a considerable impact on the algorithm’s performance (e.g. a high rejection rate often
implies very long computation times). Moreover, it is an algorithm that becomes ineffective when
the dimension of the problem becomes too large. The simulated annealing algorithm and the Gibbs
sampler are algorithms that partially overcome some of these limits.

Simulated annealing

In order to go beyond some of the limitations of the Metropolis-Hastings algorithm, the acceptance
probability computation can be changed during the algorithm progression. The idea is to first
have a high acceptance probability a'?, in order to explore the whole state space (i.e. “travel
far”), and then to decrease it when the algorithm converges so that the new accepted values are
concentrated around the optimal mode. This is done by introducing a “temperature” into the
Metropolis-Hastings algorithm, which varies at each iteration and is noted T'(¢) :
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1 Initialise 2(©

2 Fort=1...n+ N :
a. Sample y ~ ¢(y®]z~D)
b. Compute the acceptance probability

1
5(y®) g2tV ®)\ 7O
N in{L( py") q(="Vly )> }

pat=1) q(y®]z-1)
c. Acceptance-rejection step: sample a value u® ~ Upo,1
® {y(t) if u® < q®
'\ =

2 else

Te\n
For example, one can use T'(t) = Tj <Tf> with 7§ the initial temperature, n the number of
0

iterations above which one thinks to reach convergence, and T’ the temperature after n iterations.
This algorithm is particularly useful when local optimums are present.

Gibbs sampler

When the dimension (of z) increases, it becomes very difficult to propose probable values in algo-
rithms using the acceptance-rejection strategy. The idea behind the Gibbs sampler is to generate z
coordinate by coordinate, while conditioning on the last values obtained. Therefore, x must admit
a decomposition such that x = (xy,...,24), and the distributions p(z;|x1,...,2i—1, Tiz1, ..., Tq)
must be known and easy to sample from. Unlike the Metropolis-Hastings algorithm, the Gibbs
sampler does not really rely on an acceptance-rejection strategy but accepts all sampled propos-
als (& = 1). The proposal distributions are imposed here: they are the conditional probability
distributions of each coordinate. The Gibbs sampler is thus a coordinate-wise update algorithm:

1 Initialise (¥ = (a:(lo), e ,x&o))
2Fort=1...n:
1. sample xgt) ~ p(x1|x§t_1), . ,xflt_l))
2. sample 2 ~ p(a:2|x§t), :L‘:(gt_l), . ,:13((;_1))
3
4. sample a:z(t) ~ p(xi|x§t), o ,xgt_)l, xl(j__ll), o ,xgt_l))
5
6. sample xg) ~ p(xd\xét), . ,xffll)

Remark: if conditional distributions are unknown for some coordinates, they can be sampled by
introducing an acceptance-rejection step for this coordinate only. Such algorithms are known as
Metropolis-within-Gibbs.
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Use of MCMC algorithms for Bayesian inference

The implementation of Metropolis-Hastings, Gibbs, or Metrolpolis within Gibbs algorithms thus
enable one to sample according from the posterior distribution of a Bayesian model. In particular,
the prior can be used as the porposal while the target distribution is the posterior.

A number of software programs such as JAGS or WinBUGS propose an implementation of
such algorithms for a great number of modeling strategies and can be applied without having to
(re)program the MCMC algorithm itself.
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Chapter 4

Bayesian analyses in biomedical
applications: some real-world use cases

In this chapter, we cover the basics of three different real-world use cases, that illustrate settings
where the Bayesian approach can be particularly useful in biomedical science.

4.1 Post-mortem analysis of an under-powered random-
ized trial: a case-study

The randomized clinical trial FOLIA (Combes et al., NEJM, 2018) evaluated a new treatment for
severe acute respiratory distress syndrome (ARDS) by comparing the mortality rate after 60 days
among 249 patients randomized between a control group (receiving conventional treatment, i.e.
mechanical ventilation) and a treatment group receiving extracorporeal membrane oxygenation
(ECMO) — the new treatment studied. A frequentist analysis of the data concluded to a Relative
Risk of death of 0.76 in the ECMO compared to control (in Intention to Treat), with Clgsy =
[0.55,1.04] and the associated p-value of 0.09.

Group
ECMO Control
group size n 124 125
number of deaths at 60 days 44 57

Table 4.1 — Observed data in the EOLIA trial

Goligher et al. (JAMA, 2018) performed a Bayesian re-analysis of these data, further exploring
the evidence and how it can be quantified and summarized with a Bayesian approach.

4.2 Bayesian meta-analysis

4.2.1 Introduction to meta-analysis

A meta-analysis is an analysis of analyses, producing a single quantitative summary of studies
answering the same research question. This can be particularly appealing, especially in biomedical
applications where medical therapies effects are often evaluated in multiple different studies. Ide-
ally, one would pool individual observations from multiple studies (while accounting for potential
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differences in the pooled experiments), but most of the times only aggregated summary statistics
estimates (often denoted as effect sizes) are available, alongside some sort of uncertainty measures
(generally the corresponding standard errors).

Study Heterogeneity

One of the main difficulties for performing a meta-analysis is the variations of the observed effects.
Those can either come from within-study uncertainty or real heterogeneity in effect size between
the different studies. It is often the case that the different studies were conducted on various
populations, and therefore there is potential extra-variability between them. In addition, studies
are often of various sample sizes, a parameter which will also impact the estimate and its variability.

Meta-analysis random-effects model

The random-effects model is the one of the most common approach to meta analysis. the model
can be written as follows:

‘91' NN(M772)

It can be seen as a hierarchical generalization of the fixed effect model y; ~ N (j, 0?) which assume
the exact same mean for each study, while the random-effects models allow for between study
variability through the parameter 7: y; ~ N (i, 02 + 7).

4.2.2 Bayesian meta-analysis in practice
Meta-analysis: a perfect usecase for Bayesian analysis ?

A Bayesian approach to inference is very attractive in this context, especially when a meta-analysis
is based only on few studies. Indeed, the Bayesian appraoch allows for integrating previous knowl-
edge in the form of informative priors, and can mitigate some of the computationnal shortcomings
encountered when dealing with few observations.

bayesmeta R package

The recent “R package bayesmeta has been implemented to perform such Bayesian meta-analysis.
It has a companion Shiny app availbale at: http://ams.med.uni-goettingen.de:3838/bayesmeta/

app/

4.2.3 Example dataset: Crins et al., 2014

In 2014, Crins et al. published a meta-analysis of controlled studies on interleukin-2 receptor
antagonists for pediatric liver transplant recipients. They estimated random effects to assess
(among other things) the incidence of i) acute rejection, ii) steroid-resistant rejection, iii) post-
transplant lymphoproliferative disease, and iv) patient death, with or without I1-2RA.
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4.2.4 Going further
Scientific literature search

An very important part preceding any meta-analysis is to perform a rigorous and exhaustive search
of the scientific literature. This is no easy task and methologies and tools have been developped
to that end. An important aspect is that quite often estimates along with their standard errors
are not given right away, so one has to transform these oneself.

Evidence synthesis

Meta-analysis is a method part of the broader field of evidence synthesis that aims at synthesizing
the scientific evidence on a particular subject. For instance, meta-regression is an extension of
meat-analysis to take into account the effect of covariates. Other approaches, such as mechanistic
modeling can also be considered for performing evidence synthesis.

Meta-analysis and more generally evidence synthesis methods are still active research domains,
and should be used with care and thoughfulness. For example, one of the debated property of the
random-effects model is that it will effectively give less weight to studies with larger sample sizes
(and smaller standard errors around their estimates — Serghiou & Goodman, JAMA, 2018), which
can be argued as either being a bug or a feature depending on the context (depending on how
trustworthy are the studies).

4.3 Adaptative phase I/II trials: CRM and Bayesian anal-
ysis

4.3.1 Introduction to Continuous Reassessment Methods (CRM) for
dose finding

Continuous Reassessment Methods (CRM) can be used in Phase I dose-escalation trials, where
the objective is to identify the optimal dose (i.e. with the greater efficacy while maintaining an
acceptable toxicity: the higher the dose the greater the efficacy but at the same time the greater
the toxicity). The idea is then to select iteratively the dose that the next recruited patient will be
given, based past accumulating observations from patients previously included. This trial design
was first introduced by O’Quigley at al. in 1990, and is being increasingly used (although still in
a minority of such trials).

A strong argument in favor of CRM is that they allow to treat each patient ethically by always
giving the dose that is best supported by the current evidence, while searching for the optimal
dose. The Bayesian approach is particularly well suited for such studies thanks to its ability to
easily formalize prior knowledge and its chain rule (i.e. sequential Bayes approach).

4.3.2 Critical reading of Kaguelidou et al., PLOS ONE, 2016

Kaguelidou et al. conducted a dose-finding study of Omeprazole on gastric pH in neonates with
Gastro-Esophageal Acid Reflux (GEAR) in order to determine the minimum effective dose. They
used a CRM design to select the drug dose as close as possible to the predefined target level of
efficacy (with a credibility interval of 95%).
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